A conserved intracellular allosteric binding site (IABS) has recently been identified at several G proteincoupled receptors (GPCRs). Starting from vercirnon, an intracellular CÀ C chemokine receptor type 9 (CCR9) antagonist and previous phase III clinical candidate for the treatment of Crohn's disease, we developed a chemical biology toolbox targeting the IABS of CCR9. We first synthesized a fluorescent ligand enabling equilibrium and kinetic binding studies via NanoBRET as well as fluorescence microscopy. Applying this molecular tool in a membrane-based setup and in living cells, we discovered a 4-aminopyrimidine analogue as a new intracellular CCR9 antagonist with improved affinity. To chemically induce CCR9 degradation, we then developed the first PROTAC targeting the IABS of GPCRs. In a proof-of-principle study, we succeeded in showing that our CCR9-PROTAC is able to reduce CCR9 levels, thereby offering an unprecedented approach to modulate GPCR activity.
Fluorescently labeled ligands are versatile molecular tools to study G protein-coupled receptors (GPCRs) and can be used for a range of different applications, including bioluminescence resonance energy transfer (BRET) assays. Here, we report the structure-based development of fluorescent ligands targeting the intracellular allosteric binding site (IABS) of the CC chemokine receptor 2 (CCR2), a class A GPCR that has been pursued as a drug target in oncology and inflammation. Starting from previously reported intracellular CCR2 antagonists, several tetramethylrhodamine (TAMRA)-labeled CCR2 ligands were designed, synthesized, and tested for their suitability as fluorescent reporters to probe binding to the IABS of CCR2. By means of these studies, we developed 14 as a fluorescent CCR2 ligand, enabling cell-free as well as cellular NanoBRET-based binding studies in a non-isotopic and high-throughput manner. Further, we show that 14 can be used as a tool for fragment-based screening approaches. Thus, our small-molecule-based fluorescent CCR2 ligand 14 represents a promising tool for future studies of CCR2 pharmacology.
Herein, we report the structure-based development of fluorescent ligands targeting the intracellular allosteric binding site (IABS) of CXC chemokine receptor 2 (CXCR2), a G proteincoupled receptor (GPCR) that has been pursued as a drug target in oncology and inflammation. Starting from the cocrystallized intracellular CXCR2 antagonist 00767013 (1), tetramethylrhodamine (TAMRA)-labeled CXCR2 ligands were designed, synthesized, and tested for their suitability as fluorescent reporters to probe binding to the IABS of CXCR2. By means of these studies, we developed Mz438 (9a) as a high-affinity and selective fluorescent CXCR2 ligand, enabling cell-free as well as cellular NanoBRET-based binding studies in a nonisotopic and highthroughput manner. Further, we show that 9a can be used as a tool to visualize intracellular target engagement for CXCR2 via fluorescence microscopy. Thus, our small-molecule-based fluorescent CXCR2 ligand 9a represents a promising tool for future studies of CXCR2 pharmacology.
Fluorescently labeled ligands are versatile molecular tools to study G protein-coupled receptors (GPCRs) and can be used for a range of different applications, including bioluminescence resonance energy transfer (BRET) assays and fluorescence microscopy. Herein, we report the structure-based development of a fluorescent ligand targeting the intracellular allosteric binding site (IABS) of the CXC chemokine receptor 2 (CXCR2), a class A GPCR that has been pursued as a drug target in oncology and inflammation. Starting from the co-crystallized intracellular CXCR2 antagonist 00767013 (1), a tetramethylrhodamine (TAMRA)-labeled CXCR2 ligand was designed, synthesized, and tested for its suitability as a fluorescent reporter to probe binding to the IABS of CXCR2. By means of these studies, we developed Mz438 (9) as a high affinity fluorescent CXCR2 ligand, enabling cell-free as well as cellular NanoBRET-based binding studies in a non-isotopic and high throughput manner. Further, we show that 9 can be used as a tool to visualize intracellular target engagement for CXCR2 via fluorescence microscopy. Thus, our small molecule-based fluorescent CXCR2 ligand 9 represents a promising tool for future studies of CXCR2 pharmacology.
A conserved intracellular allosteric binding site (IABS) has recently been identified at several G protein‐coupled receptors (GPCRs). Ligands targeting the IABS, so‐called intracellular allosteric antagonists, are highly promising compounds for pharmaceutical intervention and currently evaluated in several clinical trials. Beside co‐crystal structures that laid the foundation for the structure‐based development of intracellular allosteric GPCR antagonists, small molecule tools that enable an unambiguous identification and characterization of intracellular allosteric GPCR ligands are of utmost importance for drug discovery campaigns in this field. Herein, we discuss recent approaches that leverage cellular target engagement studies for the IABS and thus play a critical role in the evaluation of IABS‐targeted ligands as potential therapeutic agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.