SignificanceWe report on a single mutation in the α1-subunit M2 helix (p.α1Leu251Arg) of the muscle acetylcholine receptor (AChR) found in a patient with congenital myasthenic syndrome (CMS) that is shown to convert the AChR into chloride conductance at positive potentials. Constriction of the channel pore with partial desolvation and stabilization of the permeating chloride ions by the arginine residues is revealed as the underlying mechanism. This article is of general interest because it describes a mechanism for the transformation of the muscle AChR into an inhibitory channel, and presents a report of charge selectivity conversion in association with a naturally occurring single mutation. Our findings might also give explanation to a pathomechanism in CMS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.