Although some years have passed since the discovery of the ferroelectric phase in HfO 2 and ZrO 2 and their solid solution system Hf x Zr 1−x O 2 , the details of the emergence of this phase are still under investigation. Surface energy contribution, dopant inclusion, residual stress, electric field, and oxygen vacancies have been proposed and studied as potential factors that can influence the phase stabilization. In this work, Hf x Zr 1−x O 2 layers with different Hf/Zr ratios are deposited via atomic layer deposition (ALD) and physical vapor deposition (PVD) and the amount of oxygen that is supplied during deposition is varied. Results are compared for the two deposition techniques for undoped HfO 2 layers. Electrical and structural analysis for the atomic layer-deposited films with different Zr contents and O 2 contents is then performed and the reliability of the films when integrated into capacitors is addressed. The results are correlated to the composition of the layers and a model for layer crystallization is suggested.
III-valent dopants have shown to be most effective in stabilizing the ferroelectric, crystalline phase in atomic layer deposited, polycrystalline HfO2 thin films. On the other hand, such dopants are commonly used for tetragonal and cubic phase stabilization in ceramic HfO2. This difference in the impact has not been elucidated so far. The prospect is a suitable doping to produce ferroelectric HfO2 ceramics with a technological impact. In this paper, we investigate the impact of Al, Y, and La doping, which have experimentally proven to stabilize the ferroelectric Pca21 phase in HfO2, in a comprehensive first-principles study. Density functional theory calculations reveal the structure, formation energy, and total energy of various defects in HfO2. Most relevant are substitutional electronically compensated defects without oxygen vacancy, substitutional mixed compensated defects paired with a vacancy, and ionically compensated defect complexes containing two substitutional dopants paired with a vacancy. The ferroelectric phase is strongly favored with La and Y in the substitutional defect. The mixed compensated defect favors the ferroelectric phase as well, but the strongly favored cubic phase limits the concentration range for ferroelectricity. We conclude that a reduction of oxygen vacancies should significantly enhance this range in Y doped HfO2 thin films. With Al, the substitutional defect hardly favors the ferroelectric phase before the tetragonal phase becomes strongly favored with the increasing concentration. This could explain the observed field induced ferroelectricity in Al-doped HfO2. Further Al defects are investigated, but do not favor the f-phase such that the current explanation remains incomplete for Al doping. According to the simulation, doping alone shows clear trends, but is insufficient to replace the monoclinic phase as the ground state. To explain this fact, some other mechanism is needed.
The ferroelectric properties of nanoscale silicon doped HfO 2 promise a multitude of applications ranging from ferroelectric memory to energy-related applications. The reason for the unexpected behavior has not been clearly proven and presumably include contributions from size effects and doping effects. Silicon incorporation in HfO 2 is investigated computationally by first-principles using different density functional theory (DFT) methods. Formation energies of interstitial and substitutional silicon in HfO 2 paired with and without an oxygen vacancy prove the substitutional defect as the most likely. Within the investigated concentration window up to 12.5 formula unit %, silicon doping alone is not sufficient to stabilize the polar and orthorhombic crystal phase (po-phase), which has been identified as the source of the ferroelectricity in HfO 2 . On the other hand, silicon incorporation is one of the strongest promoters of the p-o-phase and the tetragonal phase (t-phase) within the group of investigated dopants, confirming the experimental ferroelectric window. Besides silicon, the favoring effects on the energy of other four-valent dopants, C, Ge, Ti, Sn, Zr and Ce, are examined, revealing Ce as a very promising candidate. The evolution of the volume changes with increasing doping concentration of these four-valent dopants shows an inverse trend for Ce in comparison to silicon. To complement this study, the geometrical incorporation of the dopants in the host HfO 2 lattice was analyzed.
Thin film metal-insulator-metal capacitors with undoped hafnium oxide and the mixture of hafnium and zirconium oxide are fabricated by sputtering from ceramic targets. The influence of the oxygen concentration in...
Insight into the origin of process-related properties like small-scale inhomogeneities is key for material optimization. Here, we analyze DFT calculations of randomly doped HfO 2 structures with Si, La, and V O and relate them to the kind of production process. Total energies of the relevant ferroelectric Pbc2 1 phase are compared with the competing crystallographic phases under the influence of the arising local inhomogeneities in a coarse-grained approach. The interaction among dopants adds to the statistical effect from the random positioning of the dopants. In anneals after atomic layer or chemical solution deposition processes, which are short compared to ceramic process tempering, the large energy variations remain because the dopants do not diffuse. Since the energy difference is the criterion for the phase stability, the large variation suggests the possibility of nanoregions and diffuse phase transitions because these local doping effects may move the system over the paraelectric-ferroelectric phase boundary.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.