BackgroundRight ventricular (RV) diastolic function is impaired in patients with pulmonary arterial hypertension (PAH). Our previous study showed that elevated cardiomyocyte stiffness and myofilament Ca2+ sensitivity underlie diastolic dysfunction in PAH. This study investigates protein modifications contributing to cellular diastolic dysfunction in PAH.Methods and ResultsRV samples from PAH patients undergoing heart‐lung transplantation were compared to non‐failing donors (Don). Titin stiffness contribution to RV diastolic dysfunction was determined by Western‐blot analyses using antibodies to protein‐kinase‐A (PKA), Cα (PKCα) and Ca2+/calmoduling‐dependent‐kinase (CamKIIδ) titin and phospholamban (PLN) phosphorylation sites: N2B (Ser469), PEVK (Ser170 and Ser26), and PLN (Thr17), respectively. PKA and PKCα sites were significantly less phosphorylated in PAH compared with donors (P<0.0001). To test the functional relevance of PKA‐, PKCα‐, and CamKIIδ‐mediated titin phosphorylation, we measured the stiffness of single RV cardiomyocytes before and after kinase incubation. PKA significantly decreased PAH RV cardiomyocyte diastolic stiffness, PKCα further increased stiffness while CamKIIδ had no major effect. CamKIIδ activation was determined indirectly by measuring PLN Thr17phosphorylation level. No significant changes were found between the groups. Myofilament Ca2+ sensitivity is mediated by sarcomeric troponin I (cTnI) phosphorylation. We observed increased unphosphorylated cTnI in PAH compared with donors (P<0.05) and reduced PKA‐mediated cTnI phosphorylation (Ser22/23) (P<0.001). Finally, alterations in Ca2+‐handling proteins contribute to RV diastolic dysfunction due to insufficient diastolic Ca2+ clearance. PAH SERCA2a levels and PLN phosphorylation were significantly reduced compared with donors (P<0.05).ConclusionsIncreased titin stiffness, reduced cTnI phosphorylation, and altered levels of phosphorylation of Ca2+ handling proteins contribute to RV diastolic dysfunction in PAH.
Perturbations in sarcomeric function may in part underlie systolic and diastolic dysfunction of the failing heart. Sarcomeric dysfunction has been ascribed to changes in phosphorylation status of sarcomeric proteins caused by an altered balance between intracellular kinases and phosphatases during the development of cardiac disease. In the present review we discuss changes in phosphorylation of the thick filament protein myosin binding protein C (cMyBP-C) reported in failing myocardium, with emphasis on phosphorylation changes observed in familial hypertrophic cardiomyopathy caused by mutations in MYBPC3. Moreover, we will discuss assays which allow to distinguish between functional consequences of mutant sarcomeric proteins and (mal)adaptive changes in sarcomeric protein phosphorylation.
Hypertrophic cardiomyopathy (HCM), the most common genetic cardiac disorder, is frequently caused by mutations in MYBPC3, encoding cardiac myosin-binding protein C (cMyBP-C). Moreover, HCM is the leading cause of sudden cardiac death (SCD) in young athletes. Interestingly, SCD is more likely to occur in male than in female athletes. However, the pathophysiological mechanisms leading to sex-specific differences are poorly understood. Therefore, we studied the effect of sex and exercise on functional properties of the heart and sarcomeres in mice carrying a MYBPC3 point mutation (G > A transition in exon 6) associated with human HCM. Echocardiography followed by isometric force measurements in left ventricular (LV) membrane-permeabilized cardiomyocytes was performed in wild-type (WT) and heterozygous (HET) knock-in mice of both sex (N = 5 per group) in sedentary mice and mice that underwent an 8-week voluntary wheel-running exercise protocol. Isometric force measurements in single cardiomyocytes revealed a lower maximal force generation (F max) of the sarcomeres in male sedentary HET (13.0 ± 1.1 kN/m(2)) compared to corresponding WT (18.4 ± 1.8 kN/m(2)) male mice. Exercise induced a higher F max in HET male mice, while it did not affect HET females. Interestingly, a low cardiac troponin I bisphosphorylation, increased myofilament Ca(2+)-sensitivity, and LV hypertrophy were particularly observed in exercised HET females. In conclusion, in sedentary animals, contractile differences are seen between male and female HET mice. Male and female HET hearts adapted differently to a voluntary exercise protocol, indicating that physiological stimuli elicit a sexually dimorphic cardiac response in heterozygous MYBPC3-targeted knock-in mice.
Key points This paper describes a novel model that allows exploration of matrix‐induced cardiomyocyte adaptations independent of the passive effect of matrix rigidity on cardiomyocyte function.Detachment of adult cardiomyocytes from the matrix enables the study of matrix effects on cell shortening, Ca2+ handling and myofilament function.Cell shortening and Ca2+ handling are altered in cardiomyocytes cultured for 24 h on a stiff matrix.Matrix stiffness‐impaired cardiomyocyte contractility is reversed upon normalization of extracellular stiffness.Matrix stiffness‐induced reduction in unloaded shortening is more pronounced in cardiomyocytes isolated from obese ZSF1 rats with heart failure with preserved ejection fraction compared to lean ZSF1 rats. AbstractExtracellular matrix (ECM) stiffening is a key element of cardiac disease. Increased rigidity of the ECM passively inhibits cardiac contraction, but if and how matrix stiffening also actively alters cardiomyocyte contractility is incompletely understood. In vitro models designed to study cardiomyocyte–matrix interaction lack the possibility to separate passive inhibition by a stiff matrix from active matrix‐induced alterations of cardiomyocyte properties. Here we introduce a novel experimental model that allows exploration of cardiomyocyte functional alterations in response to matrix stiffening. Adult rat cardiomyocytes were cultured for 24 h on matrices of tuneable stiffness representing the healthy and the diseased heart and detached from their matrix before functional measurements. We demonstrate that matrix stiffening, independent of passive inhibition, reduces cell shortening and Ca2+ handling but does not alter myofilament‐generated force. Additionally, detachment of adult cultured cardiomyocytes allowed the transfer of cells from one matrix to another. This revealed that stiffness‐induced cardiomyocyte changes are reversed when matrix stiffness is normalized. These matrix stiffness‐induced changes in cardiomyocyte function could not be explained by adaptation in the microtubules. Additionally, cardiomyocytes isolated from stiff hearts of the obese ZSF1 rat model of heart failure with preserved ejection fraction show more pronounced reduction in unloaded shortening in response to matrix stiffening. Taken together, we introduce a method that allows evaluation of the influence of ECM properties on cardiomyocyte function separate from the passive inhibitory component of a stiff matrix. As such, it adds an important and physiologically relevant tool to investigate the functional consequences of cardiomyocyte–matrix interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.