Oral squamous cell carcinoma (OSCC) is amongst the most common malignancies, with an estimated incidence of 377,000 and 177,000 deaths worldwide. The interval between the onset of symptoms and the start of adequate treatment is directly related to tumor stage and 5-year-survival rates of patients. Early detection is therefore crucial for efficient cancer therapy. This study aims to detect OSCC on clinical photographs (CP) automatically. 1406 CP(s) were manually annotated and labeled as a reference. A deep-learning approach based on Swin-Transformer was trained and validated on 1265 CP(s). Subsequently, the trained algorithm was applied to a test set consisting of 141 CP(s). The classification accuracy and the area-under-the-curve (AUC) were calculated. The proposed method achieved a classification accuracy of 0.986 and an AUC of 0.99 for classifying OSCC on clinical photographs. Deep learning-based assistance of clinicians may raise the rate of early detection of oral cancer and hence the survival rate and quality of life of patients.
Zusammenfassung
Der Gesichtssch?del ist in der heutigen Zeit h?ufig von Verletzungen
betroffen. Neben k?rperlichen Auseinandersetzungen, Fahrradst?rzen und
Sportunf?llen f?hren Schussverletzungen zu unterschiedlichsten
Verletzungsmustern, die ?sthetische, aber auch funktionelle Defizite bei den
Betroffenen hinterlassen k?nnen. In diesem Zusammenhang ist die korrekte
3-dimensionale Rekonstruktion des Gesichtssch?dels von entscheidender
Bedeutung. Heute verf?gbare intraoperative bildgebende Verfahren sind in der
Lage, die Reposition und die Rekonstruktion des Gesichtssch?dels
mehrdimensional zu visualisieren, um ggf. eine Revision sofort durchf?hren
zu k?nnen. Die komplexe 3-dimensionale Struktur des Gesichtssch?dels stellt
dabei besondere Anforderungen an die intraoperativen bildgebenden Verfahren,
da nur eine 3-dimensionale Bildgebung eine ausreichende Beurteilung des
Operationserfolgs zul?sst. Dieser ?bersichtsartikel beschreibt die aktuellen
intraoperativen bildgebenden Verfahren mit Sonografie, CT, MRT und DVT
einschlie?lich ihrer Vor- und Nachteile aus der Sicht der Mund-, Kiefer- und
Gesichtschirurgie.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.