We construct an importance sampling method for computing statistics related to rare events for weakly interacting diffusions. Standard Monte Carlo methods behave exponentially poorly with the number of particles in the system for such problems. Our scheme is based on subsolutions of a Hamilton-Jacobi-Bellman (HJB) Equation on Wasserstein Space which arises in the theory of mean-field (McKean-Vlasov) control. We identify conditions under which such a scheme is asymptotically optimal. In the process, we make connections between the large deviations principle for the empirical measure of weakly interacting diffusions, mean-field control, and the HJB Equation on Wasserstein Space. We also provide evidence, both analytical and numerical, that with sufficient regularity of the HJB Equation, our scheme can have vanishingly small relative error in the many particle limit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.