The fundamental, yet poorly understood, physiological mechanism known as 'acidic-metabolic' vasodilation, contributes to local blood flow regulation during hypoxia/ischaemia and increased metabolic activity. The vasodilator nitric oxide (NO) has been suggested to be involved in this event. Besides enzymatic production by NO synthases, a novel mechanism for generation of this gas in vivo was recently described. This involves non-enzymatic reduction of inorganic nitrite to NO, a reaction that takes place predominantly during acidic/reducing conditions. We have studied the effects of physiological amounts of nitrite on NO generation and relaxation of rat aorta in vitro in a situation where environmental pH was reduced to levels seen in tissues during hypoxia/ischaemia. The relaxatory effect of nitrite was increased in an acidic buffer solution (pH 6.6) compared with neutral pH; EC50 for nitrite was reduced from 200 to 40 microM. Nitrite-evoked relaxation was effectively prevented by coadministration of an inhibitor of soluble guanylyl cyclase. The relaxation was further potentiated by the addition of ascorbic acid. In parallel, NO was generated from nitrite in a pH dependent manner with even larger amounts seen after addition of ascorbic acid. NO generation from nitrite correlated to the the degree of relaxation of rat aorta. These results illustrate non-enzymatic release of NO from nitrite at physiological concentrations. This may be an important auto-regulated physiological mechanism involved in the regulation of vascular tone during hypoxia/ischaemia.
The fundamental, yet poorly understood, physiological mechanism known as 'acidic-metabolic' vasodilation, contributes to local blood flow regulation during hypoxia/ischaemia and increased metabolic activity. The vasodilator nitric oxide (NO) has been suggested to be involved in this event. Besides enzymatic production by NO synthases, a novel mechanism for generation of this gas in vivo was recently described. This involves non-enzymatic reduction of inorganic nitrite to NO, a reaction that takes place predominantly during acidic/reducing conditions. We have studied the effects of physiological amounts of nitrite on NO generation and relaxation of rat aorta in vitro in a situation where environmental pH was reduced to levels seen in tissues during hypoxia/ischaemia. The relaxatory effect of nitrite was increased in an acidic buffer solution (pH 6.6) compared with neutral pH; EC50 for nitrite was reduced from 200 to 40 microM. Nitrite-evoked relaxation was effectively prevented by coadministration of an inhibitor of soluble guanylyl cyclase. The relaxation was further potentiated by the addition of ascorbic acid. In parallel, NO was generated from nitrite in a pH dependent manner with even larger amounts seen after addition of ascorbic acid. NO generation from nitrite correlated to the the degree of relaxation of rat aorta. These results illustrate non-enzymatic release of NO from nitrite at physiological concentrations. This may be an important auto-regulated physiological mechanism involved in the regulation of vascular tone during hypoxia/ischaemia.
The production of nitric oxide (NO) is increased in active ulcerative colitis and in Crohn's disease. We have studied NO production in collagenous colitis (CC) and lymphocytic colitis (LC), both of which are inflammatory bowel disorders of unknown aetiology. NO levels were measured directly in gas sampled from the colon during colonoscopy. Plasma levels of NO metabolites (nitrate/nitrite) were also measured. Luminal NO levels were more than 100 times higher in patients with CC compared with controls. In addition, plasma levels of nitrate/nitrite were increased in the patients as compared with controls. Measurements of NO directly in the colon or its oxidation products in plasma may be a helpful tool in further understanding the role of NO in the pathophysiology of CC and LC. Moreover, it is tempting to speculate that these measurements could be clinically useful in the diagnosis and therapy monitoring of these two inflammatory bowel diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.