As a result of new aviation legislation, from 2019 on all air-carrier pilots are obliged to go through flight simulator-based stall recovery training. For this reason the Control and Simulation division at Delft University of Technology has set up a task force to develop a new methodology for high-fidelity aircraft stall behavior modeling and simulation. As part of this research project, the development of a new high-fidelity Cessna II simulation model, valid throughout the normal, pre-stall flight envelope, is presented in this paper. From an extensive collection of flight test data, aerodynamic model identification was performed using the Two-Step Method. New in this approach is the use of the Unscented Kalman Filter for an improved accuracy and robustness of the state estimation step. Also, for the first time an explicit data-driven model structure selection is presented for the Citation II by making use of an orthogonal regression scheme. This procedure has indicated that most of the six non-dimensional forces and moments can be parametrized sufficiently by a linear model structure. It was shown that only the translational and lateral aerodynamic force models would benefit from the addition of higher order terms, more specifically the squared angle of attack and angle of sideslip. The newly identified aerodynamic model was implemented into an upgraded version of the existing simulation framework and will serve as a basis for the integration of a stall and post-stall model.
The implementation of a stereoselective Michael addition with water as substrate is still a major challenge by classical, chemical means. Inspired by nature's ability to carry out this attractive reaction with both high selectivity and efficiency, the interest in hydratases (EC 4.2.1.x) to accomplish a selective water addition is steadily rising. The gram‐positive bacterial genus Rhodococcus is known as biocatalytic powerhouse and has been reported to hydrate various Michael acceptors leading to chiral alcohols. This study aimed at the in‐depth re‐investigation of the hydration potential of Rhodococcus whole‐cells towards Michael acceptors. Here, two concurrent effects responsible for the hydration reaction were found: while the majority of substrates was hydrated in an oxygen‐independent manner by amino‐acid catalysis, an enzyme‐catalysed water addition to (E)‐4‐hydroxy‐3‐methylbut‐2‐enoic acid was proven to be oxygen‐dependent. 18O2‐labelling studies showed that no 18O2 was incorporated in the product. Therefore, a novel O2‐dependent hydratase distinct from all characterised hydratases so far was found.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.