We present various characterizations of uniform lower bounds for the Ricci curvature of a smooth Riemannian manifold M in terms of convexity properties of the entropy (considered as a function on the space of probability measures on M) as well as in terms of transportation inequalities for volume measures, heat kernels, and Brownian motions and in terms of gradient estimates for the heat semigroup.
We construct a new random probability measure on the sphere and on the unit interval which in both cases has a Gibbs structure with the relative entropy functional as Hamiltonian. It satisfies a quasi-invariance formula with respect to the action of smooth diffeomorphism of the sphere and the interval respectively. The associated integration by parts formula is used to construct two classes of diffusion processes on probability measures (on the sphere or the unit interval) by Dirichlet form methods. The first one is closely related to Malliavin's Brownian motion on the homeomorphism group. The second one is a probability valued stochastic perturbation of the heat flow, whose intrinsic metric is the quadratic Wasserstein distance. It may be regarded as the canonical diffusion process on the Wasserstein space.With the composition • of maps, G is a semigroup. Its neutral element e is the identity map. Of particular interest in the sequel will be the semigroup G 1 = G/S 1 where functions g, h ∈ G will be identified if g(.) = h(. + a) for some a ∈ S 1 .Proposition 2.2. The map χ : G 1 → P, g → g * Leb (= push forward of the Lebesgue measure on S 1 under the map g) and its inverse χ −1 : P → G 1 , µ → g µ (with g µ as defined in (2.2)) establish an isometry between the space G 1 equipped with the induced L 2 -distanceand the space P of probability measures on S 1 equipped with the L 2 -Wasserstein distance. In particular, G 1 is compact.
We construct a system of interacting two-sided Bessel processes on the unit interval and show that the associated empirical measure process converges to the Wasserstein diffusion (von Renesse and Sturm (2009) [25]), assuming that Markov uniqueness holds for the generating Wasserstein Dirichlet form. The proof is based on the variational convergence of an associated sequence of Dirichlet forms in the generalized Mosco sense of Kuwae and Shioya (2003) [19].
Abstract. Using a variant of the Euler-Maruyama scheme for stochastic functional differential equations with bounded memory driven by Brownian motion we show that only weak one-sided local Lipschitz (or "monotonicity") conditions are sufficient for local existence and uniqueness of strong solutions. In case of explosion the method yields the maximal solution up to the explosion time. We also provide a weak growth condition which prevents explosions to occur. In an appendix we formulate and prove four lemmas which may be of independent interest: three of them can be viewed as rather general stochastic versions of Gronwall's Lemma, the final one provides tail bounds for Hölder norms of stochastic integrals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.