ObjectiveFaecal microbiota transplantation (FMT) is effective for the treatment of recurrent Clostridium difficile infection (CDI). Studies have shown bacterial colonisation after FMT, but data on viral alterations in CDI are scarce. We investigated enteric virome alterations in CDI and the association between viral transfer and clinical outcome in patients with CDI.DesignUltra-deep metagenomic sequencing of virus-like particle preparations and bacterial 16S rRNA sequencing were performed on stool samples from 24 subjects with CDI and 20 healthy controls. We longitudinally assessed the virome and bacterial microbiome changes in nine CDI subjects treated with FMT and five treated with vancomycin. Enteric virome alterations were assessed in association with treatment response.ResultsSubjects with CDI demonstrated a significantly higher abundance of bacteriophage Caudovirales and a lower Caudovirales diversity, richness and evenness compared with healthy household controls. Significant correlations were observed between bacterial families Proteobacteria, Actinobacteria and Caudovirales taxa in CDI. FMT treatment resulted in a significant decrease in the abundance of Caudovirales in CDI. Cure after FMT was observed when donor-derived Caudovirales contigs occupied a larger fraction of the enteric virome in the recipients (p=0.024). In treatment responders, FMT was associated with alterations in the virome and the bacterial microbiome, while vancomycin treatment led to alterations in the bacterial community alone.ConclusionsIn a preliminary study, CDI is characterised by enteric virome dysbiosis. Treatment response in FMT was associated with a high colonisation level of donor-derived Caudovirales taxa in the recipient. Caudovirales bacteriophages may play a role in the efficacy of FMT in CDI.Trial registration numberNCT02570477
Proper preservation of stool samples to minimize microbial community shifts and inactivate infectious agents is important for self-collected specimens requiring shipment to laboratories when cold chain transport is not feasible. In this study, we evaluated the performance of six preservation solutions (Norgen, OMNI, RNAlater, CURNA, HEMA, and Shield) for these aspects. Following storage of human stool samples with these preservatives at room temperature for 7 days, three hypervariable regions of the bacterial 16S rRNA gene (V1-V2, V3-V4, and V4) were amplicon sequenced. We found that samples collected in two preservatives, Norgen and OMNI, showed the least shift in community composition relative to −80°C standards compared with other storage conditions, and both efficiently inhibited the growth of aerobic and anaerobic bacteria. RNAlater did not prevent bacterial activity and exhibited relatively larger community shift. Although the effect of preservation solution was small compared to intersubject variation, notable changes in microbiota composition were observed, which could create biases in downstream data analysis. When community profiles inferred from different 16S rRNA gene hypervariable regions were compared, we found differential sensitivity of primer sets in identifying overall microbial community and certain bacterial taxa. For example, reads generated by the V4 primer pair showed a higher alpha diversity of the gut microbial community. The degenerate 27f-YM primer failed to detect the majority of Bifidobacteriales. Our data indicate that choice of preservation solution and 16S rRNA gene primer pair are critical determinants affecting gut microbiota profiling. IMPORTANCE Large-scale human microbiota studies require specimens collected from multiple sites and/or time points to maximize detection of the small effects in microbe-host interactions. However, batch biases caused by experimental protocols, such as sample collection, massively parallel sequencing, and bioinformatics analyses, remain critical and should be minimized. This work evaluated the effects of preservation solutions and bacterial 16S rRNA gene primer pairs in revealing human gut microbiota composition. Since notable changes in detecting bacterial composition and abundance were observed among choice of preservatives and primer pairs, a consistent methodology is essential in minimizing their effects to facilitate comparisons between data sets.
Human papillomavirus (HPV) 58 accounts for a notable proportion of cervical cancers in East Asia and parts of Latin America, but it is uncommon elsewhere. The reason for such ethnogeographical predilection is unknown. In our study, nucleotide sequences of E6 and E7 genes of 401 HPV58 isolates collected from 15 countries/cities across four continents were examined. Phylogenetic relationship, geographical distribution and risk association of nucleotide sequence variations were analyzed. We found that the E6 genes of HPV58 variants were more conserved than E7. Thus, E6 is a more appropriate target for type-specific detection, whereas E7 is more appropriate for strain differentiation. The frequency of sequence variation varied geographically. Africa had significantly more isolates with E6-367A (D86E) but significantly less isolates with E6-203G, -245G, -367C (prototype-like) than other regions (p ≤ 0.003). E7-632T, -760A (T20I, G63S) was more frequently found in Asia, and E7-793G (T74A) was more frequent in Africa (p < 0.001). Variants with T20I and G63S substitutions at E7 conferred a significantly higher risk for cervical intraepithelial neoplasia grade III and invasive cervical cancer compared to other HPV58 variants (odds ratio = 4.44, p = 0.007). In conclusion, T20I and/or G63S substitution(s) at E7 of HPV58 is/are associated with a higher risk for cervical neoplasia. These substitutions are more commonly found in Asia and the Americas, which may account for the higher disease attribution of HPV58 in these areas.
ObjectiveTo estimate the prevalence and attribution of two non-vaccine-covered HPV types (HPV52 and HPV58) across the world.MethodsMeta-analysis on studies reported in English and Chinese between 1994 and 2012.ResultsThe pooled prevalence and attribution rates of HPV52 and HPV58 in invasive cervical cancers were significantly higher in Eastern Asia compared to other regions (HPV52 prevalence: 5.7% vs. 1.8–3.6%, P<0.001; HPV52 attribution: 3.7% vs. 0.2–2.0%; HPV58 prevalence: 9.8% vs. 1.1–2.5%, P<0.001; HPV58 attribution: 6.4% vs. 0.7–2.2%, P<0.001). Oceania has an insufficient number of studies to ascertain the prevalence of HPV52. Within Eastern Asia, the attribution of HPV58 to invasive cervical cancer was 1.8-fold higher than that of HPV52. Similarly, HPV52 and HPV58 shared a higher prevalence and attribution among cervical intraepithelial neoplasia in Eastern Asia. In contrast to the classical high-risk type, HPV16, the prevalence and attribution of HPV52 and HPV58 decreased with increasing lesion severity. Thus, HPV52 and HPV58 behave as an “intermediate-risk” type.ConclusionThe attribution of HPV52 and HPV58 to cervical intraepithelial neoplasia and invasive cancer in Eastern Asia were respectively 2.5–2.8 and 3.7–4.9 folds higher than elsewhere. Changes in the attributed disease fraction can serve as a surrogate marker for cross-protection or type replacement following widespread use of HPV16/18-based vaccines. This unique epidemiology should be considered when designing HPV screening assays and vaccines for Eastern Asia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.