In this paper we present a workflow management system which permits the kinds of data-driven workflows required by urgent computing, namely where new data is integrated into the workflow as a disaster progresses in order refine the predictions as time goes on. This allows the workflow to adapt to new data at runtime, a capability that most workflow management systems do not possess. The workflow management system was developed for the EU-funded VESTEC project, which aims to fuse HPC with real-time data for supporting urgent decision making. We first describe an example workflow from the VESTEC project, and show why existing workflow technologies do not meet the needs of the project. We then go on to present the design of our Workflow Management System, describe how it is implemented into the VESTEC system, and provide an example of the workflow system in use for a test case.
Based on the Regularized Functional Matching Pursuit (RFMP) algorithm for linear inverse problems, we present an analogous iterative greedy algorithm for nonlinear inverse problems, called RFMP_NL. In comparison to established methods for nonlinear inverse problems, the algorithm is able to combine very diverse types of basis functions, for example, localized and global functions. This is important, in particular, in geoscientific applications, where global structures have to be distinguished from local anomalies. Furthermore, in contrast to other methods, the algorithm does not require the solution of large linear systems. We apply the RFMP_NL to the nonlinear inverse problem of gravimetry, where gravitational data are inverted for the shape of the surface or inner layer boundaries of planetary bodies. This inverse problem is described by a nonlinear integral operator, for which we additionally provide the Fréchet derivative. Finally, we present two synthetic numerical examples to show that it is beneficial to apply the presented method to inverse gravimetric problems.
In this work, we present the so-called Regularized Weak Functional Matching Pursuit (RWFMP) algorithm, which is a weak greedy algorithm for linear ill-posed inverse problems. In comparison to the Regularized Functional Matching Pursuit (RFMP), on which it is based, the RWFMP possesses an improved theoretical analysis including the guaranteed existence of the iterates, the convergence of the algorithm for inverse problems in infinite-dimensional Hilbert spaces, and a convergence rate, which is also valid for the particular case of the RFMP. Another improvement is the cancellation of the previously required and difficult to verify semi-frame condition. Furthermore, we provide an a-priori parameter choice rule for the RWFMP, which yields a convergent regularization. Finally, we will give a numerical example, which shows that the “weak” approach is also beneficial from the computational point of view. By applying an improved search strategy in the algorithm, which is motivated by the weak approach, we can save up to 90 of computation time in comparison to the RFMP, whereas the accuracy of the solution does not change as much.
Technological advances are creating exciting new opportunities that have the potential to move HPC well beyond traditional computational workloads. In this paper we focus on the potential for HPC to be instrumental in responding to disasters such as wildfires, hurricanes, extreme flooding, earthquakes, tsunamis, winter weather conditions, and accidents. Driven by the VESTEC EU funded H2020 project, our research looks to prove HPC as a tool not only capable of simulating disasters once they have happened, but also one which is able to operate in a responsive mode, supporting disaster response teams making urgent decisions in real-time. Whilst this has the potential to revolutionise disaster response, it requires the ability to drive HPC interactively, both from the user's perspective and also based upon the arrival of data. As such interactivity is a critical component in enabling HPC to be exploited in the role of supporting disaster response teams so that urgent decision makers can make the correct decision first time, every time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.