The gradual deterioration of cognitive functions in Alzheimer’s disease is paralleled by a hierarchical progression of amyloid-beta and tau brain pathology. Recent findings indicate that toxic oligomers of amyloid-beta may cause propagation of pathology in a prion-like manner, although the underlying mechanisms are incompletely understood. Here we show that small extracellular vesicles, exosomes, from Alzheimer patients’ brains contain increased levels of amyloid-beta oligomers and can act as vehicles for the neuron-to-neuron transfer of such toxic species in recipient neurons in culture. Moreover, blocking the formation, secretion or uptake of exosomes was found to reduce both the spread of oligomers and the related toxicity. Taken together, our results imply that exosomes are centrally involved in Alzheimer’s disease and that they could serve as targets for development of new diagnostic and therapeutic principles.Electronic supplementary materialThe online version of this article (10.1007/s00401-018-1868-1) contains supplementary material, which is available to authorized users.
Extracellular high mobility group box-1 protein (HMGB1) plays important roles in the pathogenesis of nerve injury- and cancer-induced pain. However, the involvement of spinal HMGB1 in arthritis-induced pain has not been examined previously and is the focus of this study. Immunohistochemistry showed that HMGB1 is expressed in neurons and glial cells in the spinal cord. Subsequent to induction of collagen antibody-induced arthritis (CAIA), Hmgb1 mRNA and extranuclear protein levels were significantly increased in the lumbar spinal cord. Intrathecal (i.t.) injection of a neutralizing anti-HMGB1 monoclonal antibody or recombinant HMGB1 box A peptide (Abox), which each prevent extracellular HMGB1 activities, reversed CAIA-induced mechanical hypersensitivity. This occurred during ongoing joint inflammation as well as during the postinflammatory phase, indicating that spinal HMGB1 has an important function in nociception persisting beyond episodes of joint inflammation. Importantly, only HMGB1 in its partially oxidized isoform (disulfide HMGB1), which activates toll-like receptor 4 (TLR4), but not in its fully reduced or fully oxidized isoforms, evoked mechanical hypersensitivity upon i.t. injection. Interestingly, although both male and female mice developed mechanical hypersensitivity in response to i.t. HMGB1, female mice recovered faster. Furthermore, the pro-nociceptive effect of i.t. injection of HMGB1 persisted in Tlr2- and Rage-, but was absent in Tlr4-deficient mice. The same pattern was observed for HMGB1-induced spinal microglia and astrocyte activation and cytokine induction. These results demonstrate that spinal HMGB1 contributes to nociceptive signal transmission via activation of TLR4 and point to disulfide HMGB1 inhibition as a potential therapeutic strategy in treatment of chronic inflammatory pain.
Glutamate and the N-methyl-D-aspartate receptor ligand D-serine are putative gliotransmitters. Here, we show by immunogold cytochemistry of the adult hippocampus that glutamate and D-serine accumulate in synaptic-like microvesicles (SLMVs) in the perisynaptic processes of astrocytes. The estimated concentration of fixed glutamate in the astrocytic SLMVs is comparable to that in synaptic vesicles of excitatory nerve terminals (≈ 45 and ≈ 55 mM, respectively), whereas the D-serine level is about 6 mM. The vesicles are organized in small spaced clusters located near the astrocytic plasma membrane. Endoplasmic reticulum is regularly found in close vicinity to SLMVs, suggesting that astrocytes contain functional nanodomains, where a local Ca(2+) increase can trigger release of glutamate and/or D-serine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.