The current study aims to perform a geometrical investigation of an onshore Oscillating Water Column (OWC) on a large scale. The Constructal Design method is employed, aiming to maximize its available power. The OWC is subjected to two constraints (areas of the chamber and ramp below the chamber); and three degrees of freedom: height/length ratio of the chamber (H1/L1), height/length ratio of the ramp (H2/L2), and submersion of the frontal wall of the chamber (H3). A laminar, unsteady, incompressible, and two-phase flow was adopted, solving conservation equations of mass, momentum, and transport of water-air volume fraction using Finite Volume Method (FVM) and Volume of Fluid (VOF) model. The global optimal geometry led to a twice maximized available power 37.3% higher than the best case without the seabed ramp below the chamber and seven times better than the worst case. Concerning the sensibility of geometry, results indicated that the chamber geometry, given by ratio H1/L1, over the available power (P) was strongly affected by the ramp ratio H2/L2. Moreover, the behavior of the effect of H2/L2 over the once maximized available power (Pm) and corresponding optimal shape of the chamber, (H1/L1)o, changed dramatically for two different magnitudes of H3 investigated.
Light Resin Transfer Molding (LRTM) is a variation of the conventional manufacturing process known as Resin Transfer Molding (RTM). In general terms, these manufacturing processes consist of a closed mould with a preplaced fibrous preform through which a polymeric resin is injected, filling the mold completely, producing parts with complex geometries (in general) and good finish. Those processes differ, among other aspects, in the way that injection occurs. In the RTM process the resin is injected through discrete points whereas in LRTM it is injected into an empty channel (with no porous medium) which surrounds the entire mold perimeter. There are several numerical studies involving the RTM process but LRTM has not been explored enough by the scientific community. Based on that, this work proposes a numerical model developed in the FLUENT package to study the resin flow behavior in the LRTM process. Darcy’s law and Volume of Fluid method (VOF) are used to treat the interaction between air and resin during the flow in the porous medium, i.e. the mold filling problem. Moreover, two three-dimensional geometries were numerically simulated considering the RTM and LRTM processes. It was possible to note the huge differences about resin flow behavior and filling time between these processes to manufacture the same parts.
The employment of numerical methods to solve engineering problems is a reality, as well as, the worldwide concern about the need of renewable and alternative energy sources. Thus, this work presents a computational model capable of simulating the operating principle of some Wave Energy Converters (WEC). To do so, the device is coupled in a wave tank, where the sea waves are reproduced. The Finite Volume Method (FVM) and the Volume of Fluid (VOF) model are adopted. The results showed that the converter's operating principle can be numerically reproduced, demonstrating the potential of computational modeling to study this subject.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.