Abstract. Given a proper morphism X → S, we show that a large class of objects in the derived category of X naturally form an Artin stack locally of finite presentation over S. This class includes S-flat coherent sheaves and, more generally, contains the collection of all S-flat objects which can appear in the heart of a reasonable sheaf of t-structures on X. In this sense, this is the Mother of all Moduli Spaces (of sheaves). The proof proceeds by studying the finite presentation properties, deformation theory, and Grothendieck existence theorem for objects in the derived category, and then applying Artin's representability theorem.
We study moduli of semistable twisted sheaves on smooth proper morphisms of algebraic spaces. In the case of a relative curve or surface, we prove results on the structure of these spaces. For curves, they are essentially isomorphic to spaces of semistable vector bundles. In the case of surfaces, we show (under a mild hypothesis on the twisting class) that the spaces are asympotically geometrically irreducible, normal, generically smooth, and l.c.i. over the base. We also develop general tools necessary for these results: the theory of associated points and purity of sheaves on Artin stacks, twisted Bogomolov inequalities, semistability and boundedness results, and basic results on twisted Quot-schemes on a surface.
We use twisted sheaves and their moduli spaces to study the Brauer group of a scheme. In particular, we (1) show how twisted methods can be efficiently used to re-prove the basic facts about the Brauer group and cohomological Brauer group (including Gabber's theorem that they coincide for a separated union of two affine schemes), (2) give a new proof of de Jong's period-index theorem for surfaces over algebraically closed fields, and (3) prove an analogous result for surfaces over finite fields. We also include a reduction of all period-index problems for Brauer groups of function fields over algebraically closed fields to characteristic zero, which (among other things) extends de Jong's result to include classes of period divisible by the characteristic of the base field. Finally, we use the theory developed here to give counterexamples to a standard type of local-to-global conjecture for geometrically rational varieties over the function field of the projective plane.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.