Biological organisms continuously select and sample information used by their neural structures for perception and action, and for creating coherent cognitive states guiding their autonomous behavior. Information processing, however, is not solely an internal function of the nervous system. Here we show, instead, how sensorimotor interaction and body morphology can induce statistical regularities and information structure in sensory inputs and within the neural control architecture, and how the flow of information between sensors, neural units, and effectors is actively shaped by the interaction with the environment. We analyze sensory and motor data collected from real and simulated robots and reveal the presence of information structure and directed information flow induced by dynamically coupled sensorimotor activity, including effects of motor outputs on sensory inputs. We find that information structure and information flow in sensorimotor networks (a) is spatially and temporally specific; (b) can be affected by learning, and (c) can be affected by changes in body morphology. Our results suggest a fundamental link between physical embeddedness and information, highlighting the effects of embodied interactions on internal (neural) information processing, and illuminating the role of various system components on the generation of behavior.
Abstract-How is our body imprinted in our brain? This seemingly simple question is a subject of investigations of diverse disciplines, psychology, and philosophy originally complemented by neurosciences more recently. Despite substantial efforts, the mysteries of body representations are far from uncovered. The most widely used notions-body image and body schema-are still waiting to be clearly defined. The mechanisms that underlie body representations are coresponsible for the admiring capabilities that humans or many mammals can display: combining information from multiple sensory modalities, controlling their complex bodies, adapting to growth, failures, or using tools. These features are also desirable in robots. This paper surveys the body representations in biology from a functional or computational perspective to set ground for a review of the concept of body schema in robotics. First, we examine application-oriented research: how a robot can improve its capabilities by being able to automatically synthesize, extend, or adapt a model of its body. Second, we summarize the research area in which robots are used as tools to verify hypotheses on the mechanisms underlying biological body representations. We identify trends in these research areas and propose future research directions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.