The chemical upcycling of plastic waste to valuable liquid products requires catalytic cleavage architectures that afford control over the resulting product distributions. Recently, a catalyst was synthesized in which polymer chains are cleaved at the bottoms of pores to yield a narrow distribution of alkane products. An attractive feature of this architecture is the ability to modulate the product distribution by tuning physical parameters like the diameter of the pore. Understanding how such parameters affect product distributions is an important requirement of further synthetic improvements. We demonstrate that the pore diameter controls the products of the cleavage reaction via two distinct mechanisms. Our coarse-grained, particle-based simulations yield insight into the interplay of chain cleavage and pore residence times and show that the pore size can bias which bonds along a chain are cleaved.
Chemical polymer upcycling by processive catalysts is a promising plastic waste remediation strategy, with the capability of producing selective, highvalue products from waste plastics with minimal energy input. We previously designed a novel processive catalyst with a mesoporous SiO 2 shell/Pt nanoparticle/SiO 2 core architecture (mSiO 2 /Pt/SiO 2 ) that deconstructs polyolefins within narrow pores. Here, we elucidate the mechanism of processive polyolefin hydrogenolysis using in situ magic-angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy and coarse-grained molecular dynamics simulations. We observe that most polyethylene−Pt interactions do not lead to C− C bond cleavage but rather to the release of the polymer via a dehydrogenation− rehydrogenation cycle. The porous architecture increases the likelihood that a released polymer is later cleaved and enables the catalyst to perform multiple successive cleavages to the same polymer chain. Both experiment and simulation show that the extent of processivity is strongly correlated with the length of the pores, with longer pores leading to a higher processivity.
The mesoporous silica shell coating hydrogenolysis nano-catalysts alters the molecular weight distributions of cleaved polymer chains compared to catalysts without a shell. The shell, composed of radially aligned narrow cylindrical nanopores, reduces the formation of low-valued gaseous products and increases the median molecular weight of the product, thus enhancing the value of the products for polymer upcycling. To understand the role of the mesoporous shell, we have studied the spatial distribution of polystyrene chains, used as a model polymer, in the nanochannels in both the melt phase and solution phase. In the melt, we observed from small-angle X-ray scattering experiments that the infiltration rate of the polymer into the nanochannels is inversely proportional to the molecular weight, which is consistent with theory. In theta solution experiments using UV−vis spectroscopy, we found that the shell significantly enhances polymer adsorption compared to nanoparticles without pores. In addition, the degree of polymer adsorption is not a monotonic function of molecular weight but initially increases with the molecular weight before eventually decreasing. The molecular weight for the peak adsorption increases with the pore diameter. This adsorption behavior is rationalized as resulting from a balance between the mixing entropy gain by surface adsorption and the conformational entropy penalty incurred by chains confined in the nanochannels. The spatial distribution of polymer chains in the nanochannels is visualized by energy-dispersive X-ray spectroscopy (EDX), and inverse Abel-transformed data reveals a less uniform polymer distribution along the primary pore axis for longer chains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.