Prion diseases are fatal and transmissible neurodegenerative disorders linked to an aberrant conformation of the cellular prion protein (PrPc). We show that the chemical compound Suramin induced aggregation of PrP in a post‐ER/Golgi compartment and prevented further trafficking of PrPc to the outer leaflet of the plasma membrane. Instead, misfolded PrP was efficiently re‐routed to acidic compartments for intracellular degradation. In contrast to PrPSc in prion‐infected cells, PrP aggregates formed in the presence of Suramin did not accumulate, were entirely sensitive to proteolytic digestion, had distinct biophysical properties, and were not infectious. The prophylactic potential of Suramin‐induced intracellular re‐routing was tested in mice. After intraperitoneal infection with scrapie prions, peripheral application of Suramin around the time of inoculation significantly delayed onset of prion disease. Our data reveal a novel quality control mechanism for misfolded PrP isoforms and introduce a new molecular mechanism for anti‐prion compounds.
Background:It is important to understand whether proteasomal dysfunction and endoplasmic reticulum (ER) stress can influence prion propagation. Results: Both events lead to an increase of PrP aggregates in the secretory pathway and increased pathologic prion protein in infected cells. Conclusion: Our data suggest a novel pathway that contributes to prion propagation. Significance: These findings might be of relevance for the pathogenesis of sporadic prion diseases.
The conversion of the cellular prion protein (PrPc) into a pathogenic isoform (PrPSc) is one of the underlying events in the pathogenesis of the fatal transmissible spongiform encephalopathies (TSEs). Numerous compounds have been described to inhibit prion replication and PrPSc accumulation in cell culture. Among these, the drug suramin induces aggregation and re-targeting of PrPc to endocytic compartments. Plasma membrane and sites of conversion into PrPSc are thereby bypassed. In the present study, a library of suramin analogues was tested as a potential class of new anti-prion compounds and the molecular mechanisms underlying these effects were analysed. Treatment of prion-infected neuroblastoma cells with compounds containing symmetrical aromatic sulfonic acid substitutions inhibited de novo synthesis of PrPSc and induced aggregation and reduction of the half-life of PrPc without downregulating PrPc cell surface expression. Half-molecule compounds lacking the symmetrical bipolar structure or the anionic groups had no effect on PrPSc synthesis or PrPc solubility. Cell surface expression of PrPc was necessary for the activity of effective compounds. Suramin derivatives did not induce aggregation of PrPc when transport along the secretory pathway was compromised, suggesting that their effects occur at a post trans-Golgi network (TGN) site, possibly close to the compartment of conversion into PrPSc. In vitro studies with recombinant PrP demonstrated that the inhibitory effect correlated with direct binding to PrP and induction of insoluble PrP aggregates. Our data reveal an anti-prion effect that differs from those characterising other sulphated polyanions and is dependent on the presence of the symmetrical anionic structure of these molecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.