A volumetric sonication method is proposed that produces volume ablations by steering the focal point along a predetermined trajectory consisting of multiple concentric outward-moving circles. This method was tested in vivo on pig thigh muscle (32 ablations in nine animals). Trajectory diameters were 4, 12, and 16 mm with sonication duration depending on the trajectory size and ranging from 20 to 73 s. Despite the larger trajectories requiring more energy to reach necrosis within the desired volume, the ablated volume per unit applied energy increased with trajectory size, indicating improved treatment efficiency for larger trajectories. The higher amounts of energy required for the larger trajectories also increased the risk of off-focus heating, especially along the beam axis in the near field. To avoid related adverse effects, rapid volumetric multiplane MR thermometry was introduced for simultaneous monitoring of the temperature and thermal dose evolution along the beam axis and in the near field, as well as in the target region with a total coverage of six slices acquired every 3 s. An excellent correlation was observed between the thermal dose and both the nonperfused (R=0.929 for the diameter and R=0.964 for the length) and oedematous (R=0.913 for the diameter and R=0.939 for the length) volumes as seen in contrast-enhanced T1-weighted difference images and T2-weighted postsonication images, respectively. Histology confirmed the presence of a homogeneous necrosis inside the heated volumes. These results show that volumetric high-intensity focused ultrasound (HIFU) sonication allows for efficiently creating large thermal lesions while reducing treatment duration and also that the rapid multiplane MR thermometry improves the safety of the therapeutic procedure by monitoring temperature evolution both inside as well as outside the targeted volume.
Volumetric high-intensity focused ultrasound (HIFU) guided by multiplane magnetic resonance (MR) thermometry has been shown to be a safe and efficient method to thermally ablate large tissue volumes. However, the induced temperature rise and thermal lesions show significant variability, depending on exposure parameters, such as power and timing, as well as unknown tissue parameters. In this study, a simple and robust feedback-control method that relies on rapid MR thermometry to control the HIFU exposure during heating is introduced. The binary feedback algorithm adjusts the durations of the concentric ablation circles within the target volume to reach an optimal temperature. The efficacy of the binary feedback control was evaluated by performing 90 ablations in vivo and comparing the results with simulations. Feedback control of the sonications improved the reproducibility of the induced lesion size. The standard deviation of the diameter was reduced by factors of 1.9, 7.2, 5.0, and 3.4 for 4-, 8-, 12-, and 16-mm lesions, respectively. Energy efficiency was also improved, as the binary feedback method required less energy to create the desired lesion. These results show that binary feedback improves the quality of volumetric ablation by consistently producing thermal lesions of expected size while reducing the required energy as well.
ObjectiveThe purpose of this prospective multicenter study was to assess the safety and technical feasibility of volumetric Magnetic Resonance-guided High Intensity Focused Ultrasound (MR-HIFU) ablation for treatment of patients with symptomatic uterine fibroids.MethodsThirty-three patients with 36 fibroids were treated with volumetric MR-HIFU ablation. Treatment capability and technical feasibility were assessed by comparison of the Non-Perfused Volumes (NPVs) with MR thermal dose predicted treatment volumes. Safety was determined by evaluation of complications or adverse events and unintended lesions. Secondary endpoints were pain and discomfort scores, recovery time and length of hospital stay.ResultsThe mean NPV calculated as a percentage of the total fibroid volume was 21.7%. Correlation between the predicted treatment volumes and NPVs was found to be very strong, with a correlation coefficient r of 0.87. All patients tolerated the treatment well and were treated on an outpatient basis. No serious adverse events were reported and recovery time to normal activities was 2.3 ± 1.8 days.ConclusionThis prospective multicenter study proved that volumetric MR-HIFU is safe and technically feasible for the treatment of symptomatic uterine fibroids.Key Points• Magnetic-resonance-guided high intensity focused ultrasound allows non-invasive treatment of uterine fibroids.• Volumetric feedback ablation is a novel technology that allows larger treatment volumes• MR-guided ultrasound ablation of uterine fibroids appears safe using volumetric feedback
Purpose: Mild hyperthermia can be used as an adjuvant therapy to enhance radiation therapy or chemotherapy of cancer. However, administering mild hyperthermia is technically challenging due to the high accuracy required of the temperature control. MR guided high-intensity focused ultrasound (MR-HIFU) is a technology that can address this challenge. In this work, accurate and spatially uniform mild hyperthermia is demonstrated for deep-seated clinically relevant heating volumes using a HIFU system under MR guidance. Methods: Mild hyperthermia heating was evaluated for temperature accuracy and spatial uniformity in 11 in vivo porcine leg experiments. Hyperthermia was induced with a commercial Philips Sonalleve MR-HIFU system embedded in a 1.5T Ingenia MR scanner. The operating software was modified to allow extended duration mild hyperthermia. Heating time varied from 10 min up to 60 min and the assigned target temperature was 42.5• C. Electronic focal point steering, mechanical transducer movement, and dynamic transducer element switch-off were exploited to enlarge the heated volume and obtain uniform heating throughout the acoustic beam path. Multiple temperature mapping images were used to control and monitor the heating. The magnetic field drift and transducer susceptibility artifacts were compensated to enable accurate volumetric MR thermometry. Results: The obtained mean temperature for the target area (the cross sectional area of the heated volume at focal depth primarily used to control the heating) was on average 42.0 ± 0.6• C. Temperature uniformity in the target area was evaluated using T10 and T90, which were 43.1 ± 0.6 and 40.9 ± 0.6• C, respectively. For the near field, the corresponding temperatures were 39.3 ± 0.8• C (average), 40.6 ± 1.0• C (T10), and 38.0 ± 0.9• C (T90). The sonications resulted in a concise heating volume, typically in the shape of a truncated cone. The average depth reached from the skin was 86.9 mm. The results show that the heating algorithm was able to induce deep heating while keeping the near-field temperature uniform and at a safe level. Conclusions: The capability of MR-HIFU to induce accurate, spatially uniform, and robust mild hyperthermia in large deep-seated volumes was successfully demonstrated through a series of in vivo animal experiments. C
This method is simple, rapid, and reliable, and enables intercostal HIFU ablation while sparing ribs and their surrounding tissues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.