Adult Drosophila melanogaster has long been a popular model for learning and memory studies. Now the larval stage of the fruit fly is also being used in an increasing number of classical conditioning studies. In this study, we employed heat shock as a novel negative reinforcement for larvae and obtained high learning scores following just one training trial. We demonstrated heat-shock conditioning in both reciprocal and non-reciprocal paradigms and observed that the time window of association for the odor and heat shock reinforcement is on the order of a few minutes. This is slightly wider than the time window for electroshock conditioning reported in previous studies, possibly due to lingering effects of the high temperature. To test the utility of this simplified assay for the identification of new mutations that disrupt learning, we examined flies carrying mutations in the dnc gene. While the sensitivity to heat shock, as tested by writhing, was similar for wild type and dnc homozygotes, dnc mutations strongly diminished learning. We confirmed that the learning defect in dnc flies was indeed due to mutation in the dnc gene using non-complementation analysis. Given that heat shock has not been employed as a reinforcement for larvae in the past, we explored learning as a function of heat shock intensity and found that optimal learning occurred around 41 °C, with higher and lower temperatures both resulting in lower learning scores. In summary, we have developed a very simple, robust paradigm of learning in fruit fly larvae using heat shock reinforcement.
Meniscal tears treated with partial meniscectomies have been shown to significantly increase contract pressures within the tibiofemoral joint, and a complete focal meniscal deficiency may render the entirety of the meniscus functionally incompetent. Although various techniques of meniscal transplantation have been described, these techniques may require the excision of a considerable amount of healthy meniscal tissue. Furthermore, failures continue to frequently occur. Therefore, attempts to restoring normal knee kinematics and biomechanical forces are essential. Segmental meniscus allograft transplantations may offer the advantage of a robust repair by both maintaining knee biomechanics and biology while maximizing preservation of native meniscal tissue. Also, most meniscal deficiency involves only a portion of the meniscus, and thus we developed this technique to segmentally transplant only the deficient portion. The purpose of this Technical Note is to describe a technique of segmental medial meniscus allograft transplantation in a patient with focal medial meniscus deficiency.
This study establishes patients who may be at high risk for glenoid bone loss based on mechanism of injury and physical examination findings. This prognostic study is a level II retrospective study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.