Acid gas removal is a critical process step in natural gas processing and syngas production for ammonia and other uses. Application of a liquid phase turbocharger to the acid gas removal unit (AGRU) results in significant energy savings and improvement to reliability, availability and maintainability (RAM) of the plant. This paper describes conventional configurations with high pressure pumps and new configurations utilizing liquid phase turbochargers. Design of the equipment, process operations and controls and reliability analysis are included. The results of a RAM study comparing conventional configurations to those incorporating liquid phase turbochargers in multiple cases are also presented. From the RAM study, it can be concluded that flow sheet configurations that include a liquid phase turbocharger consistently provide lower plant downtime and maintenance costs as compared with conventional flow sheet configurations. This is in addition to the energy savings that result from energy recovery with the application of the liquid phase turbocharger to the AGRU. For the reference plant used in the study, the maintenance cost savings are as great as $2.5M over the 20 year lifetime of the plant and average annual downtime reduction is as much as 19.8 hours.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.