Background As a major public health crisis, the novel coronavirus disease 2019 (COVID-19) pandemic demonstrates the urgent need for safe, effective, and evidence-based implementations of digital health. The urgency stems from the frequent tendency to focus attention on seemingly high promising digital health interventions despite being poorly validated in times of crisis. Aim In this paper, we describe a joint call for action to use and leverage evidence-based health informatics as the foundation for the COVID-19 response and public health interventions. Tangible examples are provided for how the working groups and special interest groups of the International Medical Informatics Association (IMIA) are helping to build an evidence-based response to this crisis. Methods Leaders of working and special interest groups of the IMIA, a total of 26 groups, were contacted via e-mail to provide a summary of the scientific-based efforts taken to combat COVID-19 pandemic and participate in the discussion toward the creation of this manuscript. A total of 13 groups participated in this manuscript. Results Various efforts were exerted by members of IMIA including (1) developing evidence-based guidelines for the design and deployment of digital health solutions during COVID-19; (2) surveying clinical informaticians internationally about key digital solutions deployed to combat COVID-19 and the challenges faced when implementing and using them; and (3) offering necessary resources for clinicians about the use of digital tools in clinical practice, education, and research during COVID-19. Discussion Rigor and evidence need to be taken into consideration when designing, implementing, and using digital tools to combat COVID-19 to avoid delays and unforeseen negative consequences. It is paramount to employ a multidisciplinary approach for the development and implementation of digital health tools that have been rapidly deployed in response to the pandemic bearing in mind human factors, ethics, data privacy, and the diversity of context at the local, national, and international levels. The training and capacity building of front-line workers is crucial and must be linked to a clear strategy for evaluation of ongoing experiences.
Objectives: To identify the ways in which healthcare information and communication technologies can be improved to address the challenges raised by the COVID-19 pandemic. Methods: The study population included health informatics experts who had been involved with the planning, development and deployment of healthcare information and communication technologies in healthcare settings in response to the challenges presented by the COVID-19 pandemic. Data were collected via an online survey. A non-probability convenience sampling strategy was employed. Data were analyzed with content analysis. Results: A total of 65 participants from 16 countries responded to the conducted survey. The four major themes regarding recommended improvements identified from the content analysis included: improved technology availability, improved interoperability, intuitive user interfaces and adoption of standards of care. Respondents also identified several key healthcare information and communication technologies that can help to provide better healthcare to patients during the COVID-19 pandemic, including telehealth, advanced software, electronic health records, remote work technologies (e.g., remote desktop computer access), and clinical decision support tools. Conclusions: Our results help to identify several important healthcare information and communication technologies, recommended by health informatics experts, which can help to provide better care to patients during the COVID-19 pandemic. The results also highlight the need for improved interoperability, intuitive user interfaces and advocating the adoption of standards of care.
Conclusions: Readmission prediction models should be implemented twice, to allow for early intervention at-admission and to capture new at-risk patients at-discharge. Lessons learned: The timing of readmission risk prediction makes a difference in terms of the population identified at each prediction time point. Limitations: Our results may not be generalizable to other settings where clinic and hospital data are not linked. However, with the growing use of EHRs,[4] the data included in the final PREADM-H may be increasingly available to many healthcare organizations. Suggestions for future research: Our results provide an example of the potential complementary implementation of the predictive models to maximize their power in identifying various groups of high-risk patients for inclusion in within as well as post-discharge interventions. Further studies are needed to strengthen our findings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.