Light scattering is a universal matter property that is especially prominent in nanoscale or larger materials. However, the effects of scattering-based cascading optical processes on experimental quantification of sample absorption, scattering, and emission intensities, as well as scattering and emission depolarization, have not been adequately addressed. Using a series of polystyrene nanoparticles (PSNPs) of different sizes as model analytes, we present a computational and experimental study on the effects of cascading light scattering on experimental quantification of NP scattering activities (scattering cross-section or molar coefficient), intensity, and depolarization. Part II and Part III of this series of companion articles explore the effects of cascading optical processes on sample absorption and fluorescence measurements, respectively. A general theoretical model is developed on how forward scattered light complicates the general applicability of Beer's law to the experimental UV−vis spectrum of scattering samples. The correlation between the scattering intensity and PSNP concentration is highly complicated with no robust linearity even when the scatterers' concentration is very low. Such complexity arises from the combination of concentration-dependence of light scattering depolarization and the scattering inner filter effects (IFEs). Scattering depolarization increases with the PSNP scattering extinction (thereby, its concentration) but can never reach unity (isotropic) due to the polarization dependence of the scattering IFE. The insights from this study are important for understanding the strengths and limitations of various scattering-based techniques for material characterization including nanoparticle quantification. They are also foundational for quantitative mechanistic understanding on the effects of light scattering on sample absorption and fluorescence measurements.
Integrating spheres (IS) have been used extensively for the characterization of light absorption in turbid samples. However, converting the IS-based sample absorption coefficient to the UV–vis absorbance quantified with a double-beam UV–vis spectrophotometer is challenging. Herein, we report an integrating-sphere-assisted resonance synchronous (ISARS) spectroscopy method performed with conventional spectrofluorometers equipped with an integrating-sphere accessory. Mathematical models and experimental procedures for quantifying the sample, solvent, and instrument-baseline ISARS intensity spectra were provided. A three-parameter analytical model has been developed for correlating the ISARS-based UV–vis absorbance and the absorbance measured with double-beam instruments. This ISARS method enables the quantitative separation of light absorption and scattering contribution to the sample UV–vis extinction spectrum measured with double-beam UV–vis spectrophotometers. Example applications of this ISARS technique are demonstrated with a series of representative samples differing significantly in their optical complexities, from approximately pure absorbers, pure scatterers, to simultaneous light absorbers, scatterers, and emitters under resonance excitation and detection conditions.
The popular textbook and literature model I(λ x ,λ m ) = λ λ − − K( , )(1 10 ) A x m x or its variants for correlating the sample absorption and fluorescence often fails even for the simplest samples where the fluorophore is the only light absorber. Reported is a first-principle model I(λ x ,λ m ) = λ λ − + K A ( , ) 10 A d A d x m x,f ( ) x,s x m,s m for correlating the sample fluorescence measured with a conventional spectrofluorometer and its UV−vis absorbance quantified with a conventional UV−vis spectrophotometer. This model can be simplified or expanded for a variety of fluorescence analyses. First, it enables curve-fitting fluorescence intensity as a function of the fluorophore or sample absorbance over a sample concentration range impossible with existing models. Second, it provides the theoretical foundation for an inner-filter-effect (IFE)-correction method developed earlier and explains mathematically the linearity between the IFE-corrected fluorescence and the fluorophore concentration or absorbance. Third, this model can be expanded for quantitative mechanistic studies of fluorescence intensity variations triggered by stimuli treatments. One demonstrated example is to quantify temperature effects on the emission-wavelength-specific and total fluorescence quantum yield of anthracene.We expect that this first-principle model will be broadly adopted for both student education that promotes evidence-based learning and a variety of fluorescence applications where disentangling sample absorption and emission are critical for reliable data analysis.
Polydopamine (PDA) is a unique bioinspired synthetic polymer that integrates broadband light absorption, efficient photothermal transduction, and versatile surface-adhesion functions in a single material entity. Here, we utilize colloidal PDA beads in the submicron particle size regime as an easily processable and photothermally active support for sub-10 nm Pd nanocatalysts to construct a multifunctional material system that allows us to kinetically boost thermal catalytic reactions through visible and near-infrared light illuminations. Choosing the Pd-catalyzed nitrophenol reduction by ammonium formate as a model transfer hydrogenation reaction exhibiting temperature-dependent reaction rates, we demonstrate that interfacial molecule-transforming processes on metal nanocatalyst surfaces can be kinetically modulated by harnessing the thermal energy produced through photothermal transduction in the PDA supports.
In Part I of the three companion articles, we reported the effects of light scattering on experimental quantification of scattering extinction, intensity, and depolarization in solutions that contain only scatterers with no significant absorption and photoluminescence activities. The present work (Part II) studies the effects of light scattering and absorption on a series of optical spectroscopic measurements done on samples that contain both absorbers and scatterers, but not emitters. The experimental UV−vis spectrum is the sum of the sample absorption and scattering extinction spectra. However, the upper limit of the experimental Beer's-law-abiding extinction can be limited prematurely by the interference of forward scattered light. Light absorption reduces not only the sample scattering intensity but also the scattering depolarization. The impact of scattering on sample light absorption is complicated, depending on whether the absorption of scattered light is taken into consideration. Scattering reduces light absorption along the optical path length from the excitation source to the UV−vis detector. However, the absorption of the scattered light can be adequate to compensate the reduced light absorption along such optical path, making the impacts of light scattering on the sample total light absorption negligibly small (<10%). The latter finding constitutes a critical validation of the integrating-sphere-assisted resonance synchronous spectroscopic method for experimental quantification of absorption and scattering contribution to the sample UV−vis extinction spectra. The techniques and general guidelines provided in this work should help improve the reliability of optical spectroscopic characterization of nanoscale or larger materials, many of which are simultaneous absorbers and scatterers. The insights from this work are foundational for Part III of this series of work, which is on the cascading optical processes on spectroscopic measurements of fluorescent samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.