We study pseudo-polynomial formulations for the classical bin packing and cutting stock problems. We first propose an overview of dominance and equivalence relations among the main pattern-based and pseudo-polynomial formulations from the literature. We then introduce reflect, a new formulation that uses just half of the bin capacity to model an instance and needs significantly less constraints and variables than the classical models. We propose upper and lower bounding techniques that make use of column generation and dual information to compensate reflect weaknesses when bin capacity is too high. We also present non-trivial adaptations of our techniques that solve two interesting problem variants, namely, the variable sized bin packing problem and the bin packing problem with item fragmentation. Extensive computational tests on benchmark instances show that our algorithms achieve state of the art results on all problems, improving upon previous algorithms and finding several new proven optimal solutions.
We consider the multiple knapsack problem, that calls for the optimal assignment of a set of items, each having a profit and a weight, to a set of knapsacks, each having a maximum capacity. The problem has relevant managerial implications and is known to be very difficult to solve in practice for instances of realistic size. We review the main results from the literature, including a classical mathematical model and a number of improvement techniques. We then present two new pseudo-polynomial formulations, together with specifically tailored decomposition algorithms to tackle the practical difficulty of the problem. Extensive computational experiments show the effectiveness of the proposed approaches.
We consider the problem of packing a set of rectangular items into a strip of fixed width, without overlapping, using minimum height. Items must be packed with their edges parallel to those of the strip, but rotation by 90° is allowed. The problem is usually solved through branch-and-bound algorithms. We propose an alternative method, based on Benders' decomposition. The master problem is solved through a new ILP model based on the arc flow formulation, while constraint programming is used to solve the slave problem. The resulting method is hybridized with a state-of-the-art branch-and-bound algorithm. Computational experiments on classical benchmarks from the literature show the effectiveness of the proposed approach. We additionally show that the algorithm can be successfully used to solve relevant related problems, like rectangle packing and pallet loading
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.