We analyze the regularity of the value function and of the optimal exercise boundary of the American Put option when the underlying asset pays a discrete dividend at known times during the lifetime of the option. The ex-dividend asset price process is assumed to follow the Black-Scholes dynamics and the dividend amount is a deterministic function of the ex-dividend asset price just before the dividend date. This function is assumed to be non-negative, non-decreasing and with growth rate not greater than 1. We prove that the exercise boundary is continuous and that the smooth contact property holds for the value function at any time but the dividend dates. We thus extend and generalize the results obtained in [JV11] when the dividend function is also positive and concave. Lastly, we give conditions on the dividend function ensuring that the exercise boundary is locally monotonic in a neighborhood of the corresponding dividend date.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.