We investigate the dynamical interaction of a central star cluster surrounding a supermassive black hole (SMBH) and a central accretion disk (AD). The dissipative force acting on stars in the disk leads to an enhanced mass flow toward the SMBH and to an asymmetry in the phase space distribution due to the rotating AD. The AD is considered as a stationary Keplerian rotating disk, which is vertically extended in order to employ a fully self-consistent treatment of stellar dynamics including the dissipative force originating from star-gas ram pressure effects. The stellar system is treated with a direct high-accuracy N-body integration code. A star-by-star representation, desirable in N-body simulations, cannot be extended to real particle numbers yet. Hence, we carefully discuss the scaling behavior of our model with regard to particle number and tidal accretion radius. The main idea is to find a family of models for which the ratio of two-body relaxation time and dissipation time (for kinetic energy of stellar orbits) is constant, which then allows us to extrapolate our results to real parameters of galactic nuclei. Our model is derived from basic physical principles and as such it provides insight into the role of physical processes in galactic nuclei, but it should be regarded as a first step toward more realistic and more comprehensive simulations. Nevertheless, the following conclusions appear to be robust: the star accretion rate onto the AD and subsequently onto the SMBH is enhanced by a significant factor compared to purely stellar dynamical systems neglecting the disk. This process leads to enhanced fueling of central disks in active galactic nuclei (AGNs) and to an enhanced rate of tidal stellar disruptions. Such disruptions may produce electromagnetic counterparts in the form of observable X-ray flares. Our models improve predictions for their rates in quiescent galactic nuclei. We do not yet model direct stellar collisions in the gravitational potential well of the black hole, which could further enhance the growth rate of the black hole. Our models are relevant for quiescent galactic nuclei, because all our mass accretion rates would give rise to luminosities much smaller than the Eddington luminosity. To reach Eddington luminosities, outflows, and feedback as in the most active QSOs, other scenarios are needed, such as gas accretion after galaxy mergers. However, for AGNs close to the Eddington limit, this process may not serve as the dominant accretion process due to the long timescale.
It has been repeatedly proposed to expand the scope for SETI, and one of the suggested alternatives to radio is the biological media. Genomic DNA is already used on Earth to store nonbiological information. Though smaller in capacity, but stronger in noise immunity is the genetic code. The code is a flexible mapping between codons and amino acids, and this flexibility allows modifying the code artificially. But once fixed, the code might stay unchanged over cosmological timescales; in fact, it is the most durable construct known. Therefore it represents an exceptionally reliable storage for an intelligent signature, if that conforms to biological and thermodynamic requirements. As the actual scenario for the origin of terrestrial life is far from being settled, the proposal that it might have been seeded intentionally cannot be ruled out. A statistically strong intelligent-like "signal" in the genetic code is then a testable consequence of such scenario. Here we show that the terrestrial code displays a thorough precision-type orderliness matching the criteria to be considered an informational signal. Simple arrangements of the code reveal an ensemble of arithmetical and ideographical patterns of the same symbolic language. Accurate and systematic, these underlying patterns appear as a product of precision logic and nontrivial computing rather than of stochastic processes (the null hypothesis that they are due to chance coupled with presumable evolutionary pathways is rejected with P-value < 10 -13 ). The patterns are profound to the extent that the code mapping itself is uniquely deduced from their algebraic representation. The signal displays readily recognizable hallmarks of artificiality, among which are the symbol of zero, the privileged decimal syntax and semantical symmetries. Besides, extraction of the signal involves logically straightforward but abstract operations, making the patterns essentially irreducible to any natural origin. Plausible way of embedding the signal into the code and possible interpretation of its content are discussed. Overall, while the code is nearly optimized biologically, its limited capacity is used extremely efficiently to store non-biological information.
Starting with geometrical premises, we infer the existence of fundamental cosmological scalar fields. We then consider physically relevant situations in which spacetime metric is induced by one or, in general, by two scalar fields, in accord with the Papapetrou algorithm. The first of these fields, identified with dark energy, has exceedingly small but finite (subquantum) Hubble mass scale (≈ 10 −33 eV), and might be represented as a neutral superposition of quasi-static electric fields. The second field is identified with dark matter as an effectively scalar conglomerate composed of primordial neutrinos and antineutrinos in a special tachyonic state.
The Janis-Newman-Winicour and Papapetrou metrics represent counterparts to the Schwarzschild black hole with scalar and antiscalar background fields, correspondingly (where "anti" is to be understood as in "anti-de Sitter"). There is also a scalar counterpart (the Krori-Bhattacharjee metric) to the Kerr black hole. Here we study analytical connections between these solutions and obtain the exact rotational generalization of the antiscalar Papapetrou spacetime as a viable alternative to the Kerr black hole. The antiscalar metrics appear to be the simplest ones as they do not reveal event horizons and ergospheres, and they do not involve an extra parameter for scalar charge. Static antiscalar field is thermodynamically stable and self-consistent, but this is not the case for the scalar Janis-Newman-Winicour solution; besides, antiscalar thermodynamics is reducible to black-hole thermodynamics. Lensing, geodetic and Lense-Thirring effects are found to be practically indistinguishable between antiscalar and vacuum solutions in weak fields. Only strongfield observations might provide a test for the existence of antiscalar background. In particular, the antiscalar solution predicts 5% larger shadows of supermassive compact objects, as compared to the vacuum solution. Another measurable aspect is the 6.92% difference in the frequency of the innermost stable circular orbit, characterizing the upper cut-off in the gravitational wave spectrum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.