Most P2-type layered oxides exhibit Na+/vacancy-ordered superstructures because of strong Na+–Na+ interaction in the alkali metal layer and charge ordering in the transition metal layer. These superstructures evidenced by voltage plateaus in the electrochemical curves limit the Na+ ion transport kinetics and cycle performance in rechargeable batteries. Here we show that such Na+/vacancy ordering can be avoided by choosing the transition metal ions with similar ionic radii and different redox potentials, for example, Cr3+ and Ti4+. The designed P2-Na0.6[Cr0.6Ti0.4]O2 is completely Na+/vacancy-disordered at any sodium content and displays excellent rate capability and long cycle life. A symmetric sodium-ion battery using the same P2-Na0.6[Cr0.6Ti0.4]O2 electrode delivers 75% of the initial capacity at 12C rate. Our contribution demonstrates that the approach of preventing Na+/vacancy ordering by breaking charge ordering in the transition metal layer opens a simple way to design disordered electrode materials with high power density and long cycle life.
All the iron-based superconductors identified to date share a square lattice composed of Fe atoms as a common feature, despite having different crystal structures. In copper-based materials, the superconducting phase emerges not only in square lattice structures but also in ladder structures. Yet iron-based superconductors without a square lattice motif have not been found despite being actively sought out. Here, we report the discovery of pressure-induced superconductivity in the iron-based spin-ladder material BaFe 2 S 3 , a Mott insulator with striped-type magnetic ordering below ~120 K. On the application of pressure this compound exhibits a metal-insulator transition at about 11 GPa, followed by the appearance of superconductivity below T c = 14 K, right after the onset of the metallic phase. Our findings indicate that iron-based ladder compounds represent promising material platforms, in particular for studying the fundamentals of iron-based superconductivity.The discovery of iron-based superconductors had a significant impact on condensed matter physics and led to extensive study of the interplay between crystal structure, magnetism and superconductivity 1 . All the iron-based superconducting materials discovered to date share the same structural motif: a two-dimensional square lattice formed by edge-shared FeX 4 tetrahedra (X = Se, P and As). The Fe atoms are nominally divalent in most of the parent materials. These parent compounds undergo a magnetic transition at low temperatures, typically exhibiting striped-type ordering.Superconductivity appears when the magnetic order is fully suppressed by the application of pressure or by the addition of doping carriers through chemical Purpose of this studyThe application of pressure is often a useful means of changing the electronic structure of a compound so as to induce a metallic state without simultaneously introducing any degree of disorder 17 . In this study, we investigated in detail the magnetic properties of a sulphur-analogue of the Fe-based ladder materials, BaFe 2 S 3 (space group: orthorhombic, Cmcm) 18,19 , and undertook experimental trials in which this compound was subjected to high pressures to obtain the metallic state. The electronic properties of this material depend on the manner in which the samples are synthesized, and thus we present data for sample 1 describing magnetic properties, and data for a range of samples 1 to 6 describing high-pressure effects. The details of the sample preparation process are given in the Method section. Electronic properties under ambient pressureFigure 2a displays the temperature dependence of the electrical resistivity (ρ) of BaFe 2 S 3 along the leg direction under ambient pressure. The observed insulating behaviour, which occurs despite the expected metallic behaviour in an unfilled 3d manifold, is caused by the Coulomb repulsion between Fe 3d electrons, which becomes prominent in a quasi-one-dimensional ladder structure. Figure 2b shows the magnetic susceptibility (χ) at 5 T along the three orthorhombic...
Vying for newer sodium-ion chemistry for rechargeable batteries, Na2FeP2O7 pyrophosphate has been recently unveiled as a 3 V high-rate cathode. In addition to its low cost and promising electrochemical performance, here we demonstrate Na2FeP2O7 as a safe cathode with high thermal stability. Chemical/electrochemical desodiation of this insertion compound has led to the discovery of a new polymorph of NaFeP2O7. High-temperature analyses of the desodiated state NaFeP2O7 show an irreversible phase transition from triclinic (P1̅) to the ground state monoclinic (P21/c) polymorph above 560 °C. It demonstrates high thermal stability, with no thermal decomposition and/or oxygen evolution until 600 °C, the upper limit of the present investigation. This high operational stability is rooted in the stable pyrophosphate (P2O7)4– anion, which offers better safety than other phosphate-based cathodes. It establishes Na2FeP2O7 as a safe cathode candidate for large-scale economic sodium-ion battery applications.
Na super ion conductor (NaSICON), Na 1+n Zr 2 Si n P 3-n O 12 is considered one of the most promising solid electrolytes; however, the underlying mechanism governing ion transport is still not fully understood. Here, the existence of a previously unreported Na5 site in monoclinic Na 3 Zr 2 Si 2 PO 12 is unveiled. It is revealed that Na + -ions tend to migrate in a correlated mechanism, as suggested by a much lower energy barrier compared to the single-ion migration barrier. Furthermore, computational work uncovers the origin of the improved conductivity in the NaSICON structure, that is, the enhanced correlated migration induced by increasing the Na + -ion concentration. Systematic impedance studies on doped NaSICON materials bolster this finding. Significant improvements in both the bulk and total ion conductivity (e.g., σ bulk = 4.0 mS cm −1 , σ total = 2.4 mS cm −1 at 25 °C) are achieved by increasing the Na content from 3.0 to 3.30-3.55 mol formula unit −1 . These improvements stem from the enhanced correlated migration invoked by the increased Coulombic repulsions when more Na + -ions populate the structure rather than solely from the increased mobile ion carrier concentration. The studies also verify a strategy to enhance ion conductivity, namely, pushing the cations into high energy sites to therefore lower the energy barrier for cation migration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.