This critical review presents the state of the art research progress, proposes strategies to improve the conductivity of solid electrolytes, discusses the chemical and electrochemical stabilities, and uncovers future perspectives for solid state batteries.
Energy storage and conversion remain signifi cantly challenging to the research community. Among the candidates, lithium-ion batteries show great attraction and have been used in a wide range of applications, from small electronic devices, such as mobile phones and notebook computers, to increasing numbers of electric vehicles and large-scale energy storage equipments. [1][2][3][4][5][6] However, the relatively high cost of lithium resources shows the potential problems in terms of the long-term and large-scale applications of lithium-ion batteries. Lithium resources are limited; lithium makes up about 0.0065% of the earth ′ s crust and is unevenly distributed in South America. Thus, development of alternative storage devices is not only desirable but also necessary. Given this background, intense interest in the use of sodium-ion batteries particularly for largescale energy storage has recently been rekindled. Sodium, an element of electrochemical equivalence and proper potential, could be used as a substitute for lithium to meet the demands of rechargeable batteries. Furthermore, the sodium resources are considered to be unlimited and sodium salts widely exist in the sea. Therefore, sodium-ion batteries demonstrate the potential to substitute for lithium-ion batteries in the particular application in large-scale energy storage for renewable solar and wind power as well as smart grid. [ 7 , 8 ] Tremendous attention has been paid to sodium-ion batteries in recent years. Many electrode materials, such as Na x CoO 2 , [ 9 ] NaCrO 2 , [ 10 ] Na 1.0 Li 0.2 Ni 0.25 Mn 0.75 O δ , [ 11 , [ 17 ] hard carbon [ 13 , 18 , 19 ] and TiO 2 [ 20 ] have been investigated for application in sodium-ion batteries. Very recently, we reinvestigated the sodium ion insertion/extraction into/from Na 3 V 2 (PO 4 ) 3 with a NASICON structure. [ 21 ] The NASICON structure features a highly covalent three-dimensional framework that generates large interstitial spaces through which sodium ions may diffuse. [22][23][24] Our previous study was the fi rst to demonstrate that carbon coating can signifi cantly improve its sodium storage performance. [ 21 ] Carbon-coated Na 3 V 2 (PO 4 ) 3 electrodes show two fl at plateaus at 3.4 V and 1.6 V vs. Na + / Na, respectively. The voltage plateau located at 3.4 V is relatively higher than that of other cathode materials for sodium-ion batteries in recent reports. [9][10][11][12][13][14][15] However, the coulombic efficiency of the Na 3 V 2 (PO 4 ) 3 electrode in a half-cell is not as high as 99.5%, and does not even increase after the fi rst cycle, [ 21 ] likely because of the NaClO 4 /PC electrolyte used. Moreover, the storage capacity could also be enhanced by decreasing the carbon content of the composite and using optimized electrolyte system. In this contribution, Na 3 V 2 (PO 4 ) 3 /C nanocomposites with different carbon contents were prepared by a one-step solid state reaction and evaluated in different electrolyte systems. It was found that the sodium storage performance in terms of capacity...
Sodium-ion batteries have captured widespread attention for grid-scale energy storage owing to the natural abundance of sodium. The performance of such batteries is limited by available electrode materials, especially for sodium-ion layered oxides, motivating the exploration of high compositional diversity. How the composition determines the structural chemistry is decisive for the electrochemical performance but very challenging to predict, especially for complex compositions. We introduce the “cationic potential” that captures the key interactions of layered materials and makes it possible to predict the stacking structures. This is demonstrated through the rational design and preparation of layered electrode materials with improved performance. As the stacking structure determines the functional properties, this methodology offers a solution toward the design of alkali metal layered oxides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.