In order to investigate the diffusion behavior of poly(ethylene imine) (PEI) into keratin fibers, cross‐sectional samples of bleached white human hair treated with PEI were prepared. We were successful in developing a method for analyzing the diffusion behavior of PEI into human hair, which to our knowledge is a first. The diffusion pattern of PEI into human hair, which cannot be determined by optical microscopy, can be determined by our method. After the treatment, the cross‐sectioned hair samples were dyed with Orange II and the cross‐sectional intensity scans were measured at a wavelength of 487 nm (λmax of Orange II) with a microspectrophotometer. In our method, the diffusion pattern of PEI at pH 11.1 showed Fickian type characteristics. This suggests that the diffusion coefficient of PEI is essentially independent of the PEI concentration. By calculating the diffusion coefficient from the PEI concentration profile, the diffusion coefficient of PEI [number‐average molecular weight (Mn) = 300 and 600] into the bleached human hair was found to be on the order of 10−10 cm2/s. In addition, the diffusion coefficient of PEI (Mn = 600) with urea added increased twofold in comparison with that of PEI without urea added. This experiment demonstrated that urea acts as a penetration accelerator for PEI. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 65–71, 2005
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.