Nonpharmacological treatments of stress-induced disorders are promising, since they enhance endogenous stress defense systems, are free of side effects, and have few contraindications. The present study tested the hypothesis that intermittent hypoxia conditioning (IHC) ameliorates behavioral, biochemical, and morphological signs of experimental posttraumatic stress disorder (PTSD) induced in rats with a model of predator stress (10-day exposure to cat urine scent, 15 min daily followed by 14 days of stress-free rest). After the last day of stress exposure, rats were conditioned in an altitude chamber for 14 days at a 1,000-m simulated altitude for 30 min on day 1 with altitude and duration progressively increasing to 4,000 m for 4 h on day 5. PTSD was associated with decreased time spent in open arms and increased time spent in closed arms of the elevated X-maze, increased anxiety index, and increased rate of freezing responses. Functional and structural signs of adrenal cortex degeneration were also observed, including decreased plasma concentration of corticosterone, decreased weight of adrenal glands, reduced thickness of the fasciculate zone, and hydropic degeneration of adrenal gland cells. The thickness of the adrenal fasciculate zone negatively correlated with the anxiety index. IHC alleviated both behavioral signs of PTSD and morphological evidence of adrenal cortex dystrophy. Also, IHC alone exerted an antistress effect, which was evident from the increased time spent in open arms of the elevated X-maze and a lower number of rats displaying freezing responses. Therefore, IHC of rats with experimental PTSD reduced behavioral signs of the condition and damage to the adrenal glands. NEW & NOTEWORTHY Intermittent hypoxia conditioning (IHC) has been shown to be cardio-, vaso-, and neuroprotective. For the first time, in a model of posttraumatic stress disorder (PTSD), this study showed that IHC alleviated both PTSD-induced behavioral disorders and functional and morphological damage to the adrenal glands. Also, IHC alone exerted an antistress effect. These results suggest that IHC may be a promising complementary treatment for PTSD-associated disorders.
The concepts of allostatic load and overload, i. e., a dramatic increase in the allostatic load that predisposes to disease, have been extensively described in the literature. Here, we show that rats engaging in active offensive response (AOR) behavioral strategies to chronic predator scent stress (PSS) display less anxiety behavior and lower plasma cortisol levels vs. rats engaging in passive defensive response (PDR) behavioral strategies to chronic PSS. In the same chronic PSS paradigm, AOR rats also have higher lactate and lower glutamate levels in amygdala but not in control-region hippocampus vs. PDR rats. The implications of these findings for regulation of allostatic and stress responses, and post-traumatic stress disorder (PTSD) are discussed.
Posttraumatic stress disorder (PTSD) causes mental and somatic diseases. Intermittent hypoxic conditioning (IHC) has cardio-, vaso-, and neuroprotective effects and alleviates experimental PTSD. IHC’s ability to alleviate harmful PTSD effects on rat heart, liver, and brain was examined. PTSD was induced by 10-day exposure to cat urine scent (PTSD rats). Some rats were then adapted to 14-day IHC (PTSD+IHC rats), while PTSD and untreated control rats were cage rested. PTSD rats had a higher anxiety index (AI, X-maze test), than control or PTSD+IHC rats. This higher AI was associated with reduced glycogen content and histological signs of metabolic and hypoxic damage and of impaired contractility. The livers of PTSD rats had reduced glycogen content. Liver and blood alanine and aspartate aminotransferase activities of PTSD rats were significantly increased. PTSD rats had increased norepinephrine concentration and decreased monoamine oxidase A activity in cerebral cortex. The PTSD-induced elevation of carbonylated proteins and lipid peroxidation products in these organs reflects oxidative stress, a known cause of organ pathology. IHC alleviated PTSD-induced metabolic and structural injury and reduced oxidative stress. Therefore, IHC is a promising preventive treatment for PTSD-related morphological and functional damage to organs, due, in part, to IHC’s reduction of oxidative stress.
Variations in anxiety-related behavior are associated with individual allostatic set-points in chronically stressed rats. Actively offensive rats with the externalizing indicators of sniffling and climbing the stimulus and material tearing during 10 days of predator scent stress had reduced plasma corticosterone, increased striatal glutamate metabolites, and increased adrenal 11-dehydrocorticosterone content compared to passively defensive rats with the internalizing indicators of freezing and grooming, as well as to controls without any behavioral changes. These findings suggest that rats that display active offensive activity in response to stress develop anxiety associated with decreased allostatic set-points and increased resistance to stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.