Commodity multi-cores are still uncommon in real-time systems, as resource sharing complicates traditional timing analysis. The Predictable Execution Model (PREM) tackles this issue in software, through scheduling and code refactoring. State-of-the-art PREM compilers analyze tasks one at a time, maximizing task-level performance metrics, and are oblivious to system-level scheduling effects (e.g. memory serialization when tasks are co-scheduled). We propose a solution that allows PREM code generation and system scheduling to interact, based on a genetic algorithm aimed at maximizing overall system performance. Experiments on commodity hardware show that the performance increase can be as high as 31% compared to standard PREM code generation, without negatively impacting the predictability guarantees. CCS Concepts: • Computer systems organization → Real-time systems.
Reconfigurable heterogeneous systems-on-chips (SoCs) integrating multiple accelerators are cost-effective and feature the processing power required for complex embedded applications. However, to enable their usage in real-time settings, it is crucial to control interference on the shared main memory for reliable performance. Interference causes performance degradation due to simultaneous memory requests by components such as CPUs, caches, accelerators, and DMAs.We propose a methodology to characterize the interference to multicore host processors caused by accelerators implemented in the FPGA fabric of reconfigurable heterogeneous SoCs. Based on it, we extend the roofline model to account for performance degradation of the computing platform. The extended model allows to determine in an efficient way at which point memory interference becomes critical for a given platform and workload.We apply our methodology to a modern Xilinx UltraScale+ SoC integrating a multicore ARM Cortex-A CPU and a Kintex-grade FPGA. To the best of our knowledge, our results experimentally show for the first time that programs with intensities below 5 flop/byte -workloads with low cache locality -can suffer from slowdowns of up to an order of magnitude.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.