S1 domain, a structural variant of one of the “oldest” OB-folds (oligonucleotide/oligosaccharide-binding fold), is widespread in various proteins in three domains of life: Bacteria, Eukaryotes, and Archaea. In this study, it was shown that S1 domains of bacterial, eukaryotic, and archaeal proteins have a low percentage of identity, which indicates the uniqueness of the scaffold and is associated with protein functions. Assessment of the predisposition of tertiary flexibility of S1 domains using computational and statistical tools showed similar structural features and revealed functional flexible regions that are potentially involved in the interaction of natural binding partners. In addition, we analyzed the relative number and distribution of S1 domains in all domains of life and established specific features based on sequences and structures associated with molecular functions. The results correlate with the presence of repeats of the S1 domain in proteins containing the S1 domain in the range from one (bacterial and archaeal) to 15 (eukaryotic) and, apparently, are associated with the need for individual proteins to increase the affinity and specificity of protein binding to ligands.
The multi‐domain bacterial S1 protein is the largest and most functionally important ribosomal protein of the 30S subunit, which interacts with both mRNA and proteins. The family of ribosomal S1 proteins differs in the classical sense from a protein with tandem repeats and has a “bead‐on‐string” organization, where each repeat is folded into a globular domain. Based on our recent data, the study of evolutionary relationships for the bacterial phyla will provide evidence for one of the proposed theories of the evolutionary development of proteins with structural repeats: from multiple repeats of assembles to single repeats, or vice versa. In this comparative analysis of 1333 S1 sequences that were identified in 24 different phyla, we demonstrate how such phyla can form independently/dependently during evolution. To the best of our knowledge, this work is the first study of the evolutionary history of bacterial ribosomal S1 proteins. The collected and structured data can be useful to computer biologists as a resource for determining percent identity, amino acid composition and logo motifs, as well as dN/dS ratio in bacterial S1 protein. The obtained research data indicate that the evolutionary development of bacterial ribosomal S1 proteins evolved from multiple assemblies to single repeat. The presented data are integrated into the server, which can be accessed at http://oka.protres.ru:4200.
Chaperonin Hsp60, as a protein found in all organisms, is of great interest in medicine, since it is present in many tissues and can be used both as a drug and as an object of targeted therapy. Hence, Hsp60 deserves a fundamental comparative analysis to assess its evolutionary characteristics. It was found that the percent identity of Hsp60 amino acid sequences both within and between phyla was not high enough to identify Hsp60s as highly conserved proteins. However, their ATP binding sites are largely conserved. The amino acid composition of Hsp60s remained relatively constant. At the same time, the analysis of the nucleotide sequences showed that GC content in the Hsp60 genes was comparable to or greater than the genomic values, which may indicate a high resistance to mutations due to tight control of the nucleotide composition by DNA repair systems. Natural selection plays a dominant role in the evolution of Hsp60 genes. The degree of mutational pressure affecting the Hsp60 genes is quite low, and its direction does not depend on taxonomy. Interestingly, for the Hsp60 genes from Chordata, Arthropoda, and Proteobacteria the exact direction of mutational pressure could not be determined. However, upon further division into classes, it was found that the direction of the mutational pressure for Hsp60 genes from Fish differs from that for other chordates. The direction of the mutational pressure affects the synonymous codon usage bias. The number of high and low represented codons increases with increasing GC content, which can improve codon usage. Special server has been created for bioinformatics analysis of Hsp60: http://oka.protres.ru:4202/.
The multi-domain bacterial S1 protein is the largest and most functionally important ribosomal protein of the 30S subunit, which interacts with both mRNA and proteins. The family of ribosomal S1 proteins differs in the classical sense from a protein with tandem repeats and has a “bead-on-string” organization, where each repeat is folded into a globular domain. Based on our recent data, the study of evolutionary relationships for the bacterial phyla will provide evidence for one of the proposed theories of the evolutionary development of proteins with structural repeats: from multiple repeats of assembles to single repeats, or vice versa. In this comparative analysis of 1333 S1 sequences that were identified in 24 different phyla; we demonstrate how such phyla can independently/dependently form during evolution. To our knowledge, this work is the first study of the evolutionary history of bacterial ribosomal S1 proteins. The collected and structured data can be useful to computer biologists as a resource for determining percent identity, amino acid composition and logo motifs, as well as dN/dS ratio in bacterial S1 protein. The obtained research data suggested that the evolutionary development of bacterial ribosomal proteins S1 evolved from multiple assemblies to single repeat. The presented data are integrated into the server, which can be accessed at http://oka.protres.ru:4200.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.