Raman spectroscopy is an advantageous method for studying the local structure of materials, but the interpretation of measured spectra is complicated by the presence of oblique phonons in polycrystals of polar materials. Whilst group theory considerations and standard ab initio calculations are helpful, they are often valid only for single crystals. In this paper, we introduce a method for computing Raman spectra of polycrystalline materials from first principles. We start from the standard approach based on the (Placzek) rotation invariants of the Raman tensors and extend it to include the effect of the coupling between the lattice vibrations and the induced electric field, and the electro-optic contribution, relevant for polar materials like ferroelectrics. As exemplified by applying the method to rhombohedral BaTiO 3 , AlN, and LiNbO 3 , such an extension brings the simulated Raman spectrum to a much better correspondence with the experimental one. Additional advantages of the method are that it is general, permits automation, and thus can be used in high-throughput fashion.
Inducing and detecting the polar orthorhombic phase are crucial for the establishment of ferroelectricity in HfO2‐ and ZrO2‐based thin films. Unfortunately, commonly used structural characterization techniques such as grazing incidence angle X‐ray diffraction (GIXRD) only partially allow an accurate detection of this crystalline phase, whose characteristic pattern almost coincides with the one of the tetragonal phase. As a consequence, phase determination is commonly based on peak deconvolution tracing the position of the main peak at 2θ values of around 30°, which can be assigned both to the t(101) and the o(111) plane directions and additionally be influenced by mechanical stress in the layers. Alternatively, epitaxial layers are required to differentiate the phase. Herein, using an integrated experimental–computational approach, it is shown how Raman spectroscopy can distinguish between the monoclinic, the tetragonal, and the orthorhombic phase of ZrO2. The Raman spectra calculated from first principles match the experimentally measured data and thus enable an unambiguous phase assignment. Therefore, Raman spectroscopy proves to be a powerful technique for discerning the three main crystalline phases in these materials. As demonstrated by the good agreement between structural and electrical data, it can therefore be used to predict ferroelectricity in the addressed layers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.