BackgroundTraditionally, assessment of psychiatric symptoms has been relying on their retrospective report to a trained interviewer. The emergence of smartphones facilitates passive sensor-based monitoring and active real-time monitoring through time-stamped prompts; however there are few validated self-report measures designed for this purpose.MethodsWe introduce a novel, compact questionnaire, Mood Zoom (MZ), embedded in a customised smart-phone application. MZ asks participants to rate anxiety, elation, sadness, anger, irritability and energy on a 7-point Likert scale. For comparison, we used four standard clinical questionnaires administered to participants weekly to quantify mania (ASRM), depression (QIDS), anxiety (GAD-7), and quality of life (EQ-5D). We monitored 48 Bipolar Disorder (BD), 31 Borderline Personality Disorders (BPD) and 51 Healthy control (HC) participants to study longitudinal (median±iqr: 313±194 days) variation and differences of mood traits by exploring the data using diverse time-series tools.ResultsMZ correlated well (|normalR|>0.5,p<0.0001) with QIDS, GAD-7, and EQ-5D. We found statistically strong (|normalR|>0.3,p<0.0001) differences in variability in all questionnaires for the three cohorts. Compared to HC, BD and BPD participants exhibit different trends and variability, and on average had higher self-reported scores in mania, depression, and anxiety, and lower quality of life. In particular, analysis of MZ variability can differentiate BD and BPD which was not hitherto possible using the weekly questionnaires.LimitationsAll reported scores rely on self-assessment; there is a lack of ongoing clinical assessment by experts to validate the findings.ConclusionsMZ could be used for efficient, long-term, effective daily monitoring of mood instability in clinical psychiatric practice.
This article presents a review of signals used for measuring physiology and activity during sleep and techniques for extracting information from these signals. We examine both clinical needs and biomedical signal processing approaches across a range of sensor types. Issues with recording and analysing the signals are discussed, together with their applicability to various clinical disorders. Both univariate and data fusion (exploiting the diverse characteristics of the primary recorded signals) approaches are discussed, together with a comparison of automated methods for analysing sleep.
PubMed is a free search engine for biomedical literature accessed by millions of users from around the world each day. With the rapid growth of biomedical literature—about two articles are added every minute on average—finding and retrieving the most relevant papers for a given query is increasingly challenging. We present Best Match, a new relevance search algorithm for PubMed that leverages the intelligence of our users and cutting-edge machine-learning technology as an alternative to the traditional date sort order. The Best Match algorithm is trained with past user searches with dozens of relevance-ranking signals (factors), the most important being the past usage of an article, publication date, relevance score, and type of article. This new algorithm demonstrates state-of-the-art retrieval performance in benchmarking experiments as well as an improved user experience in real-world testing (over 20% increase in user click-through rate). Since its deployment in June 2017, we have observed a significant increase (60%) in PubMed searches with relevance sort order: it now assists millions of PubMed searches each week. In this work, we hope to increase the awareness and transparency of this new relevance sort option for PubMed users, enabling them to retrieve information more effectively.
Background: A patient’s physical activity is often used by psychiatrists to contribute to the diagnostic process for mental disorders. Typically, it is based mostly on self-reports or observations, and hardly ever upon actigraphy. Other signals related to physiology are rarely used, despite the fact that the autonomic nervous system is often affected by mental disorders. Aim: This study attempted to fuse physiological and physical activity data and discover features that are predictive for schizophrenia. Method: Continuous simultaneous heart rate (HR) and physical activity recordings were made on 16 individuals with schizophrenia and 19 healthy controls. Statistical characteristics of the recorded data were analyzed, as well as non-linear rest–activity measures and disorganization measures. Results: Four most predictive features for schizophrenia were identified, namely, the standard deviation and mode of locomotor activity, dynamics of Multiscale Entropy change over scales of HR signal and the mean HR. A classifier trained on these features provided a cross-validation accuracy of 95.3% (AUC = 0.99) for differentiating between schizophrenia patients and controls, compared to 78.5 and 85.5% accuracy (AUC = 0.85 and AUC = 0.90) using only the HR or locomotor activity features. Conclusion: Physiological and physical activity signals provide complimentary information for assessment of mental health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.