BackgroundConcerns on microplastics (MPs) in food are increasing because of our increased awareness of daily exposure and our knowledge gap on their potential adverse health effects. When particles are ingested, macrophages play an important role in scavenging them, potentially leading to an unwanted immune response. To elucidate the adverse effects of MPs on human health, insights in the immunotoxicity of MPs are essential.ObjectivesTo assess the effect of environmentally collected ocean and land weathered MP particles on the immunological response of macrophages using a state-of-the art in vitro immunotoxicity assay specifically designed for measuring particle toxicity.MethodsEnvironmentally-weathered macroplastic samples were collected from the North Pacific Subtropical Gyre and from the French coastal environment. Macroplastics were identified using (micro)Raman-spectrometry, FT-IR and Py-GC-MS and cryo-milled to obtain size-fractionated samples up to 300 μm. Physiochemical MP properties were characterized using phase contrast microscopy, gel-permeation chromatography, nuclear magnetic resonance, and differential scanning colorimetry. Macrophages (differentiated THP-1 cells) were exposed to particles (<300 μm) for 48 h before assessment of cell viability and cytokine release. Using both the physiochemical particle properties and biological data, we performed multi-dimensional data analysis to explore relationships between particle properties and immunotoxicological effects.ResultsWe investigated land-derived polyethylene, polypropylene, polystyrene, and polyethylene terephthalate, water-derived polypropylene macroplastics, and virgin polyethylene fibers and nylon MPs. The different plastic polymeric compositions and MP size classes induced distinct cytokine responses. Macrophages had the largest response to polyethylene terephthalate-particle exposure, including a dose-related increase in IL-1β, IL-8, and TNF-α secretion. Smaller MPs induced cytokine production at lower concentrations. Additionally, a relationship between both physical and chemical particle properties and the inflammatory response of macrophages was found.DiscussionThis research shows that MP exposure could lead to an inflammatory response in vitro, depending on MP material and size. Whether this implies a risk to human health needs to be further explored.
Background Hazardous substances at the workplace can cause a wide variety of occupational incidents. This study aimed to investigate the nature and circumstances of acute occupational intoxications reported to the Dutch Poisons Information Center. Methods During a one-year prospective study, data on the circumstances and causes of the incident, the exposure(s) and clinical course, were collected by a telephone survey with victims of an acute occupational intoxication. Results We interviewed 310 patients. Most incidents occurred in industry (25%), building and installation industry (14%) and agriculture (10%). Patients were often exposed via multiple routes. Inhalation was the most common route of exposure (62%), followed by ocular (40%) and dermal contact (33%). Acids and alkalis were often involved. Exposure often occurred during cleaning activities (33%). The main root causes of these accidents were: technical factors such as damaged packaging (24%) and defective apparatus (10%), organizational factors such as lack of work instructions (44%) and poor communication or planning (31%), and personal factors such as disregarding work instructions (13%), not (adequately) using personal protective equipment (12%) and personal circumstances (50%) such as inaccuracy, time pressure or fatigue. The majority of the patients only reported mild health effects and recovered quickly (77% within 1 week). Conclusions Poison Center data on occupational exposures provide an additional source of knowledge and an important basis for poisoning prevention strategies related to hazardous substances at the workplace. These data are useful in deciding which risk mitigation measures are most needed in preventing future workplace injuries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.