Controlled photoluminescence tuning is important for the optimization and modification of phosphor materials. Herein we report an isostructural solid solution of (CaMg)x(NaSc)1-xSi2O6 (0 < x < 1) in which cation nanosegregation leads to the presence of two dilute Eu(2+) centers. The distinct nanodomains of isostructural (CaMg)Si2O6 and (NaSc)Si2O6 contain a proportional number of Eu(2+) ions with unique, independent spectroscopic signatures. Density functional theory calculations provided a theoretical understanding of the nanosegregation and indicated that the homogeneous solid solution is energetically unstable. It is shown that nanosegregation allows predictive control of color rendering and therefore provides a new method of phosphor development.
The cation substitution-dependent
phase transition was used as
a strategy to discover new solid solution phosphors and to efficiently
tune the luminescence property of divalent europium (Eu2+) in the M3(PO4)2:Eu2+ (M = Ca/Sr/Ba) quasi-binary sets. Several new phosphors including
the greenish-white SrCa2(PO4)2:Eu2+, the yellow Sr2Ca(PO4)2:Eu2+, and the cyan Ba2Ca(PO4)2:Eu2+ were reported, and the drastic red shift
of the emission toward the phase transition point was discussed. Different
behavior of luminescence evolution in response to structural variation
was verified among the three M3(PO4)2:Eu2+ joins. Sr3(PO4)2 and Ba3(PO4)2 form a continuous
isostructural solid solution set in which Eu2+ exhibits
a similar symmetric narrow-band blue emission centered at 416 nm,
whereas Sr2+ substituting Ca2+ in Ca3(PO4)2 induces a composition-dependent phase
transition and the peaking emission gets red shifted to 527 nm approaching
the phase transition point. In the Ca3–x
Ba
x
(PO4)2:Eu2+ set, the validity of crystallochemical design of
phosphor between the phase transition boundary was further verified.
This cation substitution strategy may assist in developing new phosphors
with controllably tuned optical properties based on the phase transition.
The union of structural and spectroscopic modeling can accelerate the discovery and improvement of phosphor materials if guided by an appropriate principle. Herein, we describe the concept of "chemical unit cosubstitution" as one such potential design scheme. We corroborate this strategy experimentally and computationally by applying it to the Ca2(Al(1-x)Mg(x))(Al(1-x)Si(1+x))O7:Eu(2+) solid solution phosphor. The cosubstitution is shown to be restricted to tetrahedral sites, which enables the tuning of luminescent properties. The emission peaks shift from 513 to 538 nm with a decreasing Stokes shift, which has been simulated by a crystal-field model. The correlation between the 5d crystal-field splitting of Eu(2+) ions and the local geometry structure of the substituted sites is also revealed. Moreover, an energy decrease of the electron-phonon coupling effect is explained on the basis of the configurational coordinate model.
Learning from natural mineral structures is an efficient way to develop potential host lattices for applications in phosphor converted (pc)LEDs. A narrow‐band blue‐emitting silicate phosphor, RbNa3(Li3SiO4)4:Eu2+ (RNLSO:Eu2+), was derived from the UCr4C4‐type mineral model. The broad excitation spectrum (320–440 nm) indicates this phosphor can be well matched with the near ultraviolet (n‐UV) LED chip. Owing to the UCr4C4‐type highly condensed and rigid framework, RNLSO:Eu2+ exhibits an extremely small Stokes shift and an unprecedented ultra‐narrow (full‐width at half‐maximum, FWHM=22.4 nm) blue emission band (λem=471 nm) as well as excellent thermal stability (96 %@150 °C of the initial integrated intensity at 25 °C). The color gamut of the as‐fabricated (pc)LEDs is 75 % NTSC for the application in liquid crystal displays from the prototype design of an n‐UV LED chip and the narrow‐band RNLSO:Eu2+ (blue), β‐SiAlON:Eu2+ (green), and K2SiF6:Mn4+ (red) components as RGB emitters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.