One of the important tasks of such theories as theories of pattern recognition and the theory of information security, is the task of identifying terminals of information and telecommunication networks. The relevance of the topic is due to the need to study methods for identifying computer network terminals and build information security systems based on the knowledge gained. The main parameters that allow uniquely identifying subscriber terminals in the network are address-switching information, as well as a number of parameters characterizing the software and hardware of the computer system. Based on the obtained parameters, digital fingerprints of subscriber terminals are generated. The using anonymous networks by users of subscriber terminals and blocking of the methods of generating and collecting digital fingerprint parameters, does not allow to achieve the required degree of identification reliability in some cases. Based on the peculiarities of digital image formation in modern computer systems, many transformation parameters make impact on the output graphic primitive, thereby forming a digital fingerprint of the subscriber terminal, which depends on the placement of samples in a pixel, the algorithms used to calculate the degree of pixels influence, and also the procedures used of smoothing images in the graphics subsystem. In this paper an original model of image formation by means of a subscriber terminal web browser that allows to increase the degree of reliability of identification under conditions of anonymization of users of information and telecommunication networks is propesed. Features of the digital images formation in the graphic subsystems of modern computer systems are substantiated. These features allow identification under a priori uncertainty regarding the modes and parameters of information transfer.
. The analysis of networks of a diverse nature, which are citation networks, social networks or information and communication networks, includes the study of topological properties that allow one to assess the relationships between network nodes and evaluate various characteristics, such as the density and diameter of the network, related subgroups of nodes, etc. For this, the network is represented as a graph – a set of vertices and edges between them. One of the most important tasks of network analysis is to estimate the significance of a node (or in terms of graph theory – a vertex). For this, various measures of centrality have been developed, which make it possible to assess the degree of significance of the nodes of the network graph in the structure of the network under consideration. The existing variety of measures of centrality gives rise to the problem of choosing the one that most fully describes the significance and centrality of the node. The relevance of the work is due to the need to analyze the centrality measures to determine the significance of vertices, which is one of the main tasks of studying networks (graphs) in practical applications. The study made it possible, using the principal component method, to identify collinear measures of centrality, which can be further excluded both to reduce the computational complexity of calculations, which is especially important for networks that include a large number of nodes, and to increase the reliability of the interpretation of the results obtained when evaluating the significance node within the analyzed network in solving practical problems. In the course of the study, the patterns of representation of various measures of centrality in the space of principal components were revealed, which allow them to be classified in terms of the proximity of the images of network nodes formed in the space determined by the measures of centrality used.
Предмет исследования. При проектировании и обеспечении информационной безопасности систем связи одним из самых мощных инструментов является имитационное моделирование, которое по сравнению с другими методами позволяет рассматривать системы связи большой емкости, улучшать качество решений по управлению ресурсом сети и точнее прогнозировать их последствия. При этом базовыми математическими моделями для анализируемых систем являются случайные графы. Они дают фундаментальное понимание свойств анализируемых сетей и служат основой для имитационного моделирования. Учитывая высокие темпы развития вычислительных возможностей компьютеров и сред имитационного моделирования, особенно актуальным становится вопрос исследования топологических свойств случайных графов, заключающийся в анализе вероятностной динамики мер центральности. Метод. В ходе эксперимента использованы методы расчета центральности для вершин и графа в целом, основанные на научном аппарате теории графов. При исследовании вероятностной динамики математических моделей графов применена методика сравнения, основанная на диаграммах размахов. Основные результаты. Выполнено исследование динамики мер центральности в модели случайного графа Эрдеша-Реньи, модели малого мира Уоттса-Строгатца и свободно масштабируемой модели Барабаши-Альберта. Проведено сравнение мер центральности этих моделей с реальной сетью. Выявлено, что топологические свойства реальной сети наиболее полно описывает модель Барабаши-Альберта. Представленный в статье анализ мер центральности позволяет проследить взаимосвязи между параметрами различных моделей графов, что в свою очередь может быть применено в анализе реальных сетей. Практическая значимость. Полученные результаты могут быть применены при моделировании физических и социальных систем, представленных в виде графов. Представленные материалы полезны специалистам, занимающимся анализом сетей в различных областях науки и техники: социологии, медицины, физики и радиотехники. Ключевые слова граф, вершина, центральность «по посредничеству», центральность «по близости», центральность «по степени», диаграмма размахов
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.