Magnetization reversal in NiFe/IrMn exchange-biased thin films was investigated under thermal cycling in an external magnetic field, applied opposite to the direction of the exchange bias field. Thermal hysteresis of magnetization accompanied by changes in magnetization polarity was observed in the applied field close to the exchange bias value. This effect appears when thermally induced variations of the exchange bias exceed the corresponding variations in coercivity. The amplitude of magnetization reversal in NiFe/IrMn structures exceeds ~ 100 times the corresponding amplitude in spin-crossover molecular compounds. The observed bistability of the magnetic state, revealed by thermal hysteresis, gradually disappears with an increase in the number of cooling-heating thermal cycles, that indicates an irreversible quenching of the interfacial magnetization configuration. This effect paves the way for the creation of a new class of switching devices with thermally assisted bistability in the ferromagnetic state.
A set of partially uncoupled NiFe/Cu/IrMn exchange biased thin films with variable thickness of non-magnetic Cu spacer is characterized by ferromagnetic resonance (FMR) and Brillouin light scattering (BLS) techniques applied complementary to reveal time-scale dependent effects of uncoupling between ferromagnetic and antiferromagnetic layers on high-frequency magnetization dynamics. The results correlate with interfacial grain texture variations and static magnetization behavior. Two types of crystalline phases with correlated microwave response are revealed at the ferro–antiferromagnet interface in NiFe/Cu/IrMn thin films. The 1st phase forms well-textured NiFe/IrMn grains with NiFe (111)/IrMn (111) interface. The 2nd phase consists of amorphous NiFe/IrMn grains. Intercalation of NiFe/IrMn by Cu clusters results in relaxation of tensile strains at the NiFe/IrMn interface leading to larger size of grains in both the NiFe and IrMn layers. The contributions of well-textured and amorphous grains to the high-frequency magnetization reversal behavior are distinguished by FMR and BLS techniques. Generation of a spin-wave mode is revealed in the well-textured phase, whereas microwave response of the amorphous phase is found to originate from magnetization rotation dominated by a rotatable magnetic anisotropy term. Under fixed FMR frequency, the increase of Cu thickness results in higher magnetization rotation frequencies in the amorphous grains.
Anomalous Hall effect (AHE) in GdFeCo/Ir/GdFeCo multilayered structures attracts great interest because all optical switching, spin-torque, and other effects promise effective application for ultrafast memory element creation. Since AHE is controlled by GdFeCo magnetization, domain dynamics has importance for practical applications. In our work, magnetization reversal in perpendicular GdFeCo/Ir/GdFeCo synthetic ferrimagnets is characterized by AHE measurements. The AHE hysteresis loop obtained with the field applied perpendicular to the sample plane is composed of three sub-loops, and two of them are symmetrically biased with respect to the third one. Switching magnetic fields for two of the three transitions are found to be dependent on magnetic history. In particular, exposure of the sample in the in-plane field leads to reduction of the out-of-plane switching fields in side sub-loops. A multiple series of perpendicular hysteresis loops recorded after exposure under high in-plane field reveals gradual (within 30 min) relaxation of the out-of-plane switching fields to their initial values observed in a non-magnetized sample. Domain wall mobility, limiting switching of the bilayer devices, is complicated due to the coupling between partial domains in each single layer. Unusual dynamics of double domain walls results in unexpected new phenomena affecting electrical processes in bilayer structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.