Using a personal computer (PC) for simple visual reaction time testing is advantageous because of the relatively low hardware cost, user familiarity, and the relative ease of software development for specific neurobehavioral testing protocols. However, general-purpose computers are not designed with the millisecond-level accuracy of operation required for such applications. Software that does not control for the various sources of delay may return reaction time values that are substantially different from the true reaction times. We have developed and characterized a freely available system for PC-based simple visual reaction time testing that is analogous to the widely used psychomotor vigilance task (PVT). In addition, we have integrated individualized prediction algorithms for near-real-time neurobehavioral performance prediction. We characterized the precision and accuracy with which the system as a whole measures reaction times on a wide range of computer hardware configurations, comparing its performance with that of the “gold standard” PVT-192 device. We showed that the system is capable of measuring reaction times with an average delay of less than 10 ms, a margin of error that is comparable to that of the gold standard. The most critical aspect of hardware selection is the type of mouse used for response detection, with gaming mice showing a significant advantage over standard ones. The software is free to download from http://bhsai.org/downloads/pc-pvt/.
Knowing how an individual responds to sleep deprivation is a requirement for developing personalized fatigue management strategies. Here we describe and validate the 2B-Alert App, the first mobile application that progressively learns an individual's trait-like response to sleep deprivation in real time, to generate increasingly more accurate individualized predictions of alertness. We incorporated a Bayesian learning algorithm within the validated Unified Model of Performance to automatically and gradually adapt the model parameters to an individual after each psychomotor vigilance test. We implemented the resulting model and the psychomotor vigilance test as a smartphone application (2B-Alert App), and prospectively validated its performance in a 62-hr total sleep deprivation study in which 21 participants used the app to perform psychomotor vigilance tests every 3 hr and obtain real-time individualized predictions after each test. The temporal profiles of reaction times on the appconducted psychomotor vigilance tests were well correlated with and as sensitive as those obtained with a previously characterized psychomotor vigilance test device.The app progressively learned each individual's trait-like response to sleep deprivation throughout the study, yielding increasingly more accurate predictions of alertness for the last 24 hr of total sleep deprivation as the number of psychomotor vigilance tests increased. After only 12 psychomotor vigilance tests, the accuracy of the model predictions was comparable to the peak accuracy obtained using all psychomotor vigilance tests. With the ability to make real-time individualized predictions of the effects of sleep deprivation on future alertness, the 2B-Alert App can be used to tailor personalized fatigue management strategies, facilitating self-management of alertness and safety in operational and non-operational settings. K E Y W O R D Salertness, caffeine, individualized predictions, psychomotor vigilance test, sleep, smartphoneThis is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
Trauma outcomes are improved by protocols for substantial bleeding, typically activated after physician evaluation at a hospital. Previous analysis suggested that prehospital vital signs contained patterns indicating the presence or absence of substantial bleeding. In an observational study of adults (aged ≥18 years) transported to level I trauma centers by helicopter, we investigated the diagnostic performance of the Automated Processing of the Physiological Registry for Assessment of Injury Severity (APPRAISE) system, a computational platform for real-time analysis of vital signs, for identification of substantial bleeding in trauma patients with explicitly hemorrhagic injuries. We studied 209 subjects prospectively and 646 retrospectively. In our multivariate analysis, prospective performance was not significantly different from retrospective. The APPRAISE system was 76% sensitive for 24-h packed red blood cells of 9 or more units (95% confidence interval, 59% - 89%) and significantly more sensitive (P < 0.05) than any prehospital Shock Index of 1.4 or higher; sensitivity, 59%; initial systolic blood pressure (SBP) less than 110 mmHg, 50%; and any prehospital SBP less than 90 mmHg, 50%. The APPRAISE specificity for 24-h packed red blood cells of 0 units was 87% (88% for any Shock Index ≥1.4, 88% for initial SBP <110 mmHg, and 90% for any prehospital SBP <90 mmHg). Median APPRAISE hemorrhage notification time was 20 min before arrival at the trauma center. In conclusion, APPRAISE identified bleeding before trauma center arrival. En route, this capability could allow medics to focus on direct patient care rather than the monitor and, via advance radio notification, could expedite hospital interventions for patients with substantial blood loss.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.