In this research, we study the cognitive workload of aircraft pilots during a simulated takeoff procedure. We propose a proof-of-concept setup environment to gather heart rate, pupil dilation, and brain cognitive workload data during an A320 takeoff within a simulator. Experiments were performed during which we collected 136 takeoffs across 13 pilots for more than 9 hours of time-series data. Moreover, this paper investigates the correlations between heart rate, pupil dilation, and cognitive workload during such exercise and found that a spike in cognitive load during a critical moment, such as an engine failure, augments a pilot's heart rate and pupil dilation. Results show that a critical moment within a takeoff procedure increases a pilot's cognitive load. Next, we used a stacked-LSTM model to predict cognitive workload 5 seconds into the future. The model was able to produce accurate predictions.
A flexible sheet subject to a normal impinging air jet can oscillate. We present a simple experiment that shows that added damping generated by the jet is responsible for this aeroelastic instability. The cases of planar jet and circular jet are studied. A model is presented to describe this instability and the results agree well with the experimental observations. The nozzle geometry is found to be a dominant parameter that drives the critical distance between the jet and the sheet, under which the instability develops. To cite this article: M.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.