Two 1,1,4,4-tetracyanobutadiene (TCBD) derivatives were prepared by reaction of tetracyanoethylene with ynamides bearing either a pyrene or a perylene unit. They display luminescence that could be detected up to 1350 nm in the solid state.
1,1,4,4-Tetracyanobutadienes (TCBDs) bearing a large diversity of fluorophores were prepared following a multi-step synthesis. In a crucial last step, all compounds were obtained from the corresponding ynamides, which were particularly suitable for the formation of the TCBDs in the presence of tetracyanoethylene via a [2 + 2] cycloaddition/ retroelectrocyclization step (CA-RE). Several fluorenyl derivatives in addition to phenanthrenyl and terphenyl ones provided ynamide-based TCBDs affording remarkable emission properties covering a large range of wavelengths. Those compounds emit both in solid state and in solution from the visible region to the NIR range, depending on the molecular structures. Quantum yields in cyclohexane reached unforeseen values for such derivatives, up to 7.8 %. A huge sensitivity to the environment of the TCBDs has also been unraveled for most of the compounds since we observed a dramatic fall of the quantum yields when changing the solvent from cyclohexane to toluene, while they are almost non-emissive in dichloromethane.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.