The canonical polyadic decomposition (CPD) of high-order tensors, also known as Candecomp/Parafac, is very useful for representing and analyzing multidimensional data. This paper considers a CPD model having structured matrix factors, as e.g. Toeplitz, Hankel or circulant matrices, and studies its associated estimation problem. This model arises in signal processing applications such as Wiener-Hammerstein system identification and cumulant-based wireless communication channel estimation. After introducing a general formulation of the considered structured CPD (SCPD), we derive closed-form expressions for the Cramér-Rao bound (CRB) of its parameters under the presence of additive white Gaussian noise. Formulas for special cases of interest, as when the CPD contains identical factors, are also provided. Aiming at a more relevant statistical evaluation from a practical standpoint, we discuss the application of our formulas in a Bayesian context, where prior distributions are assigned to the model parameters. Three existing algorithms for computing SCPDs are then described: a constrained alternating least squares (CALS) algorithm, a subspace-based solution and an algebraic solution for SCPDs with circulant factors. Subsequently, we present three numerical simulation scenarios, in which several specialized estimators based on these algorithms are proposed for concrete examples of SCPD involving circulant factors. In particular, the third scenario concerns the identification of a Wiener-Hammerstein system via the SCPD of an associated Volterra kernel. The statistical performance of the proposed estimators is assessed via Monte Carlo simulations, by comparing their Bayesian mean-square error with the expected CRB.
The Canonical Polyadic tensor decomposition (CPD), also known as Candecomp/Parafac, is very useful in numerous scientific disciplines. Structured CPDs, i.e. with Toeplitz, circulant, or Hankel factor matrices, are often encountered in signal processing applications. As subsequently pointed out, specialized algorithms were recently proposed for estimating the deterministic parameters of structured CP decompositions. A closed-form expression of the Cramér-Rao bound (CRB) is derived, related to the problem of estimating CPD parameters, when the observed tensor is corrupted with an additive circular i.i.d. Gaussian noise. This CRB is provided for arbitrary tensor rank and sizes. Finally, the proposed CRB expression is used to asses the statistical efficiency of the existing algorithms by means of simulation results in the cases of third-order tensors having three circulant factors on one hand, and an Hankel factor on the other hand.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.