The medical isotope (Mo-99) production at Chalk River Laboratory involves the dissolution of irradiated isotope targets prior to the extraction of Mo-99. This process generates a waste that is cemented in 5-gallon containers and transferred to a waste-management facility for intermediate storage. Over the past decades, a large number of five-gallon containers of cemented radioactive waste (CRW) were produced, and Canadian Nuclear Laboratories (CNL) must develop a process to convert this material to a permanent waste form. Research has been undertaken to develop an innovative method for the recovery of U, Hg, and Cs from surrogate cemented radioactive waste (SCRW). This paper presents the pilot scale validation of the operating parameters prior to the demonstration scale testing. Leaching tests at the pilot scale were conducted with 5 kg of SCRW to validate the main operating parameters and evaluate the reuse of the leaching solution. The mean solubilization yields obtained at the pilot scale were 81.9 ± 8.3% for Cs, 99.0 ± 1% for U, and 94.9 ± 4.5% for Hg. Columns with 100 g of KNiFC-PAN and 250 g of Lewatit TP214 allow for the separation of Cs and Hg from 60 L of leaching solution without U loss. Flow rates of 12.5 BV/h and 25 BV/h were suitable to achieve 99% separation of Hg and Cs, respectively. For the Hg resin, the capacity reached 23.4 mg/g, and the capacity for the Cs resin reached 0.79 mg/g. The pilot scale U extraction results showed that the U adsorption is selective, with a breakthrough at 36 BV (capacity for U of 3.70 mg/g). Uranium elution with 1 M Na2CO3 exceeded 99%, and subsequent precipitation with NaOH achieved 99% recovery. SEM data confirmed the high purity of the U solids produced as sodium di-uranate.
The production of medical isotopes in Chalk River Laboratories facilities (Chalk River, ON, Canada) has resulted in a large quantity of cemented radioactive waste (CRW) containing valuable elements such as uranium. From the perspective of recovering and ultimately recycling valuable elements from CRW, the solubilization of key constituents such as uranium, mercury, and cesium has been previously investigated using H2SO4/KI. However, to achieve recycling of these elements, separation must be performed as they are co-solubilized. In this study, the extraction of uranium and mercury by chelating resin Lewatit TP260 from surrogate cemented radioactive waste (SCRW) leaching solution in sulfuric media and in the presence of iodide was investigated. Extraction of U and Hg was assessed as a function of the concentration of KI (0.12 M to 0.24 M) used during the SCRW dissolution process. Continuous experiments showed that the Lewatit TP260 functional group, aminomethylphosphonic acid, had a high affinity for U. Mercury was also extracted onto the Lewatit TP260. However, the presence of iodide in the SCRW leaching solution increased the competition between the adsorbed mercury of the stationary phase and the iodide–mercury complexes of the mobile phase. Additionally, the reusability of the resin was tested through extraction and desorption cycles. Due to the presence of trivalent cation, the capacity of Lewatit TP260 for U and Hg decreases with the number of cycles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.