Double-walled carbon nanotubes (DWNTs) present an original coaxial geometry in which the inner wall is naturally protected from the environment by the outer wall. Covalent functionalization is introduced here as an effective approach to investigate DWNT devices. Performed using an aryldiazonium salt, the functionalization is reversible upon thermal annealing and occurs strictly at the surface of the outer wall, leaving the inner wall essentially unaltered by the chemical bonding. Measurements on functionalized DWNT transistors show that the electrical current is carried by the inner wall and provide unambiguous identification of the metallic or semiconducting character of both walls. New insights about current saturation at high bias in DWNTs are also presented as an illustration of new experiments unlocked by the method. The wall-selectivity of the functionalization not only enables selective optical and electrical probing of the DWNTs, but it also paves the way to designing novel electronic devices in which the inner wall is used for electrical transport while the outer wall chemically interacts with the environment.
We report the effective suppression of Raman emission in a monolithic ytterbium-doped fiber laser by the insertion of a chirped and tilted fiber Bragg grating (CTFBG) directly within the gain fiber of the laser. In comparison with a non-compensated filtered laser cavity for which the Raman threshold occurs at an output power of 1.54 kW, the insertion of a CTFBG within the gain medium leads to an increase in the Raman threshold by 260 W. We also demonstrate that the insertion of a CTFBG in between a laser cavity and a passive beam delivery fiber leads to an increase in the Raman threshold by 100 W with respect to the non-compensated case.
We study the impact of inserting a chirped and tilted fiber B ragg grating in between variable lengths of oscillator and amplifier stage of a high-power fiber laser, reaching up to 2 kW in output power.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.