Nitrogen balance and myofibrillar protein breakdown were studied in 16 double-muscled Belgian Blue bulls during a low growth period (0.5 kg d−1) (LGP) of 4 mo (L4), 8 mo (L8), or 14 mo (L14) and the subsequent fattening period (rapid growth period, RGP). The control group (CG) was given a conventional fattening diet; the others received a low-energy, low-protein diet during LGP, and the same diet as the CG during RGP. Measurements were made halfway through the LGP, l mo after the beginning of the fattening period, and 1 mo before slaughter. Nitrogen balance was about half of CG (P < 0.001) during LGP, e.g., 50.8, 21.3, 25.8, and 23.8 g d−1, for CG, L4, L8, and L14, respectively. Between LGP and RGP, N balance increased by about 18 g N d−1 above the control in the compensating groups L4, L8 and L14. This was due to the higher digestibility and the higher metabolizability of the nitrogen in the fattening diet. Lower muscle protein accretion during the LGP resulted from decreased synthesis (P < 0.001) and degradation (P < 0.05) compared with the GC. When changing to RGP different evolution patterns were observed in the three formerly restricted groups, e.g. after a short restriction (L4) both synthesis and degradation rose during the RGP but declined towards the end. After a longer restriction (L8 and L14), synthesis and degradation increased and remained high. The magnitude of these increases was inversely proportional to the length of the restriction period. Key words: Belgian Blue bulls, compensatory growth, nitrogen balance, muscle, muscle protein breakdown