Over the last decade, the persistent dwindling of the populations of honey bees has become a growing concern. While this phenomenon is partly attributed to neonicotinoids (NEOCs), chronic exposures to these insecticides at environmentally-relevant concentrations are needed to fully estimate their implications. In this study, honey bees were orally exposed for 10 days to low field-realistic concentrations of NEOCs known for their effects on the cholinergic system (imidacloprid – IMI or thiamethoxam – THM). Selected biomarkers were measured such as acetylcholinesterase (AChE) activity, lipid peroxidation (LPO), α-tocopherol as well as several forms of vitamin A (retinoids) and carotenoids. Bees exposed to IMI showed lower levels of two carotenoids (α-carotene and α-cryptoxanthin) and α-tocopherol. The THM exposure increased the oxidized vitamin A metabolites in bees conjointly with the LPO. These results could be the consequence of a pro-oxidant effect of NEOCs and were observed at levels where no effects were recorded for AChE activity. This study reveals that exposure to low levels of NEOCs alters the carotenoid-retinoid system in honey bees. This would merit further investigation as these compounds are important in various aspects of bees’ health. Overall, this study contributes to the development of biomonitoring tools for the health of bees and other pollinators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.