In the automotive sector, the use of nonwoven preforms consisting of natural and thermoplastic fibers processed by compression molding is well known to manufacture vehicle interior parts. Although these natural fiber composites (NFCs) have undeniable advantages (lightweight, good life cycle assessment, recyclability, etc.), the latter release volatile organic compounds (VOCs) and odors inside the vehicle interior, which remain obstacles to their wide deployment. In this study, the effect of the compressing molding temperature on the VOCs and odors released by the flax/PP nonwoven composites was examined by heating nonwoven preforms in a temperature range up to 240 °C. During the hot-pressing process, real-time and in situ monitoring of the composite materials’ core temperature has been carried out using a thermocouples sensor. A chemical approach based on headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography—mass spectrometry (GC-MS) was used for the VOCs analysis. The olfactory approach is based on the odor intensity scale rated by expert panelists trained in olfaction. The results demonstrate marked changes in the VOCs composition with temperature, thus making it possible to understand the changes in the NFCs odor intensity. The results allow for optimizing the molding temperature to obtain less odorous NFC materials.
Pre-treatments for plant fibres are very popular for increasing the fineness of bundles, promoting individualisation of fibres, modifying the fibre-matrix interface or reducing water uptake. Most pre-treatments are based on the use of chemicals and raise concerns about possible harmful effects on the environment. In this study, we used physical pre-treatments without the addition of chemical products. Flax tows were subjected to ultrasound and gamma irradiation to increase the number of elementary fibres. For gamma pre-treatments, a 20% increase in the number of elementary fibres was quantified. The biochemical composition of pre-treated flax tows exhibited a partial elimination of sugars related to pectin and hemicelluloses depending on the pre-treatment. The hygroscopic behaviour showed a comparable decreasing trend for water sorption-desorption hysteresis for both types of pre-treatment. Then, non-woven composites were produced from the pre-treated tows using poly-(lactid) (PLA) as a bio-based matrix. A moderate difference between the composite mechanical properties was generally demonstrated, with a significant increase in the stress at break observed for the case of ultrasound pre-treatment. Finally, an environmental analysis was carried out and discussed to quantitatively compare the different environmental impacts of the pre-treatments for composite applications; the environmental benefit of using gamma irradiation compared to ultrasound pre-treatment was demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.