Space debris is positioned as a fatal problem for current and future space missions. Many effective space debris removal methods have been proposed in the past decade, and several techniques have been either tested on the ground or in parabolic flight experiments. Nevertheless, no uncooperative debris has been removed from any orbit until this moment. Therefore, to expand this research field and progressing the development of space debris removal technologies, this paper reviews and compares the existing technologies with past, present, and future methods and missions. Moreover, since one of the critical problems when designing space debris removal solutions is how to transfer the energy between the chaser/de-orbiting kit and target during the first interaction, this paper proposes a novel classification approach, named ET-Class (Energy Transfer Class). This classification approach provides an energy-based perspective to the space debris phenomenon by classifying how existing methods dissipate or store energy during the first contact.
Active debris removal (ADR) is positioned by space agencies as an in-orbit task of great importance for stabilizing the exponential growth of space debris. Most of the already developed capturing systems are designed for large specific cooperative satellites, which leads to expensive one-to-one solutions. This paper proposed a versatile hybrid-compliant mechanism to target a vast range of small uncooperative space debris in low Earth orbit (LEO), enabling a profitable one-to-many solution. The system is custom-built to fit into a CubeSat. It incorporates active (with linear actuators and impedance controller) and passive (with revolute joints) compliance to dissipate the impact energy, ensure sufficient contact time, and successfully help capture a broader range of space debris. A simulation study was conducted to evaluate and validate the necessity of integrating hybrid compliance into the ADR system. This study found the relationships among the debris mass, the system’s stiffness, and the contact time and provided the required data for tuning the impedance controller (IC) gains. This study also demonstrated the importance of hybrid compliance to guarantee the safe and reliable capture of a broader range of space debris.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.