In this paper, we propose a new construction for the Mexican hat wavelets on shapes with applications to partial shape matching. Our approach takes its main inspiration from the well‐established methodology of diffusion wavelets. This novel construction allows us to rapidly compute a multi‐scale family of Mexican hat wavelet functions, by approximating the derivative of the heat kernel. We demonstrate that this leads to a family of functions that inherit many attractive properties of the heat kernel (e.g. local support, ability to recover isometries from a single point, efficient computation). Due to its natural ability to encode high‐frequency details on a shape, the proposed method reconstructs and transfers δ‐functions more accurately than the Laplace‐Beltrami eigenfunction basis and other related bases. Finally, we apply our method to the challenging problems of partial and large‐scale shape matching. An extensive comparison to the state‐of‐the‐art shows that it is comparable in performance, while both simpler and much faster than competing approaches.
We propose a principled approach for non-isometric landmark-preserving non-rigid shape matching. Our method is based on the functional map framework, but rather than promoting isometries we focus on near-conformal maps that preserve landmarks exactly. We achieve this, first, by introducing a novel landmark-adapted basis using an intrinsic Dirichlet-Steklov eigenproblem. Second, we establish the functional decomposition of conformal maps expressed in this basis. Finally, we formulate a conformally-invariant energy that promotes high-quality landmark-preserving maps, and show how it can be optimized via a variant of the recently proposed ZoomOut method that we extend to our setting. Our method is descriptor-free, efficient and robust to significant mesh variability. We evaluate our approach on a range of benchmark datasets and demonstrate state-of-the-art performance on non-isometric benchmarks and near state-of-the-art performance on isometric ones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.