From 2010 to 2012, 246 data storage tags were deployed on European seabass in the Iroise Natural Marine Park, a marine protected area (MPA) off west Brittany, France. A return rate of 14.6% associated with long time series of data provided new information on fish ecology (e.g. maximum experienced depth greater than 225 m, temperature range 6.80–21.87°C). Depth and temperature series were used to infer individual migration using an innovative hidden Markov model (HMM) especially developed for seabass geolocation. Reconstructed fish tracks revealed that seabass is a partially migratory species, as individuals exhibited either long-distance migrations towards the Bay of Biscay or the Celtic Sea, or residency behaviour in the Iroise Sea. Fidelity to summer feeding areas and to winter spawing areas was demonstrated. These results suggest that the population is spatially structured. The Iroise Sea is likely a mixing zone for different stocks or sub-populations, and may also shelter a resident population. At the population scale, such findings may impact ICES stock assessment and the resulting decisions from EU managers. At the local scale, conservation action could be taken by MPA managers. Besides, this study demonstrates the high potential of archival tags for investigating multi-year behavioural patterns such as site fidelity to offshore spawning areas.
Oceanic currents are known to broadly shape the dispersal of juvenile sea turtles during their pelagic stage. Accordingly, simple passive drift models are widely used to investigate the distribution at sea of various juvenile sea turtle populations. However, evidence is growing that juveniles do not drift purely passively but also display some swimming activity likely directed towards favorable habitats. We therefore present here a novel Sea Turtle Active Movement Model (STAMM) in which juvenile sea turtles actively disperse under the combined effects of oceanic currents and habitat-driven movements. This model applies to all sea turtle species but is calibrated here for leatherback turtles (Dermochelys coriacea). It is first tested in a simulation of the active dispersal of juveniles originating from Jamursba-Medi, a main nesting beach of the western Pacific leatherback population. Dispersal into the North Pacific Ocean is specifically investigated. Simulation results demonstrate that, while oceanic currents broadly shape the dispersal area, modeled habitat-driven movements strongly structure the spatial and temporal distribution of juveniles within this area. In particular, these movements lead juveniles to gather in the North Pacific Transition Zone (NPTZ) and to undertake seasonal north-south migrations. More surprisingly, juveniles in the NPTZ are simulated to swim mostly towards west which considerably slows down their progression towards the American west coast. This increases their residence time, and hence the risk of interactions with fisheries, in the central and eastern part of the North Pacific basin. Simulated habitat-driven movements also strongly reduce the risk of cold-induced mortality. This risk appears to be larger among the juveniles that rapidly circulate into the Kuroshio than among those that first drift into the North Equatorial Counter Current (NECC). This mechanism might induce marked interannual variability in juvenile survival as the strength and position of the NECC are directly linked to El Niño activity.
Background The Northwest Atlantic (NWA) leatherback turtle ( Dermochelys coriacea ) subpopulation is one of the last healthy ones on Earth. Its conservation is thus of major importance for the conservation of the species itself. While adults are relatively well monitored, pelagic juveniles remain largely unobserved. In an attempt to reduce this knowledge gap, this paper presents the first detailed simulation of the open ocean dispersal of juveniles born on the main nesting beaches of French Guiana and Suriname (FGS). Methods Dispersal is simulated using STAMM, an Individual Based Model in which juveniles actively disperse under the combined effects of oceanic currents and habitat-driven movements. For comparison purposes, passive dispersal under the sole effect of oceanic currents is also simulated. Results Simulation results show that oceanic currents lead juveniles to cross the Atlantic at mid-latitudes. Unlike passive individuals, active juveniles undertake important north-south seasonal migrations while crossing the North Atlantic. They finally reach the European or North African coast and enter the Mediterranean Sea. Less than 4-year-old active turtles first arrive off Mauritania. Other productive areas on the eastern side of the Atlantic (the coast of Galicia and Portugal, the Gulf of Cadiz, the Bay of Biscay) and in the Mediterranean Sea are first reached by 6 to 9-year-old individuals. This active dispersal scheme, and its timing, appear to be consistent with all available stranding and bycatch data gathered on the Atlantic and Mediterranean coasts of Europe and North Africa. Simulation results also suggest that the timing of the dispersal and the quality of the habitats encountered by juveniles can, at least partly, explain why the NWA leatherback subpopulation is doing much better than the West Pacific one. Conclusion This paper provides the first detailed simulation of the spatial and temporal distribution of juvenile leatherback turtles dispersing from their FGS nesting beaches into the North Atlantic Ocean and Mediterranean Sea. Simulation results, corroborated by stranding and bycatch data, pinpoint several important developmental areas on the eastern side of the Atlantic Ocean and in the Mediterranean Sea. These results shall help focus observation and conservation efforts in these critical areas. Electronic supplementary material The online version of this article (10.1186/s40462-019-0149-5) contains supplementary material, which is available to authorized users.
International audienceNumerous methods have been developed to geolocate fish from data storage tags. Whereas demersal species have been tracked using tide-driven geolocation models, pelagic species which undertake extensive migrations have been mainly tracked using light-based models. Here, we present a new HMM-based model that infers pelagic fish positions from the sole use of high-resolution temperature and depth histories. A key contribution of our framework lies in model parameter inference (diffusion coefficient and noise parameters with respect to the reference geophysical fields - satellite SST and temperatures derived from the MARS3D hydrodynamic model), which improves model robustness. As a case study, we consider long time series of data storage tags deployed on European sea bass for which individual migration tracks are reconstructed for the first time. We performed a sensitivity analysis on synthetic and real data in order to assess the robustness of the reconstructed tracks with respect to model parameters, chosen reference geophysical fields and the knowledge of fish recapture position. Model assumptions and future directions are discussed. Finally, our model opens new avenues for the reconstruction and analysis of migratory patterns of many other pelagic species in relatively contrasted geophysical environments
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.