As of yet, no standard of care incorporates the use of a biomaterial to treat traumatic spinal cord injury (SCI). However, intense development of biomaterials for treating SCI have focused on the fabrication of microscale channels to support the regrowth of axons while minimizing scar tissue formation. We previously demonstrated that plant tissues can be decellularized and processed to form sterile, biocompatible and implantable biomaterials that support cell infiltration and vascularization in vivo. Notably, the vascular bundles of plant tissues are also composed of microscale channels with geometries thought to be relevant for supporting neural tissue regeneration. We hypothesized that decellularized vascular bundles would support neural regeneration and the recovery of motor function. Therefore, rats which received a complete T8-T9 spinal cord transection were implanted with plant-derived channeled scaffolds. Animals which received the scaffolds alone, with no therapeutic stem cells or other interventions, demonstrated a significant and stable improvement in motor function over six months compared to controls. Histological analysis reveals minimal scarring and axonal regrowth through the scaffolds, further confirmed with tracer studies. Taken together, our work defines a novel route for exploiting naturally occurring plant microarchitectures to support the repair of functional spinal cord tissue.
Open-source lab equipment is becoming more widespread with the popularization of fabrication tools such as 3D printers, laser cutters, CNC machines, open source microcontrollers and open source software. Although many pieces of common laboratory equipment have been developed, software control of these items is sometimes lacking. Specifically, control software that can be easily implemented and enable user-input and control over multiple platforms (PC, smartphone, web, etc.). The aim of this proof-of principle study was to develop and implement software for the control of a low-cost, 3D printed microscope. Here, we present two approaches which enable microscope control by exploiting the functionality of the social media platform Twitter or player actions inside of the videogame Minecraft. The microscope was constructed from a modified web-camera and implemented on a Raspberry Pi computer. Three aspects of microscope control were tested, including single image capture, focus control and time-lapse imaging. The Twitter embodiment enabled users to send 'tweets' directly to the microscope. Image data acquired by the microscope was then returned to the user through a Twitter reply and stored permanently on the photo-sharing platform Flickr, along with any relevant metadata. Local control of the microscope was also implemented by utilizing the video game Minecraft, in situations where Internet connectivity is not present or stable. A virtual laboratory was constructed inside the Minecraft world and player actions inside the laboratory were linked to specific microscope functions. Here, we present the methodology and results of these experiments and discuss possible limitations and future extensions of this work.
During Embryogenesis, cells undergo constant organizational remodelling. Biochemical and biophysical guidance cues act in tandem to guide migration and morphogenesis into distinct cellular patterns. It has been shown that various cell types will express different configurations of cellular adhesion molecules known as cadherins and integrins. Cocultured in vitro experiments have focused on revealing the extensive genetic expression profiles that modulate embryogenesis whilst overlooking the physical cell-cell and cell-substrate interactions that influence organization. We demonstrate that NIH3T3 and MDCK cells undergo a spontaneous phase separation when cocultured in vitro and that this phenomenon occurs through purely physical binding energies. A Monte Carlo simulation model of a mixture of cells with different cell-cell and cell-substrate binding energies reveals that the spontaneous phase separation occurs due to the minimization of interfacial free energy within the system. Cell-cell and cell-substrate binding plays a critical role in cell organization and is capable of phase separating different populations of cells in vitro.
Open-source lab equipment is becoming more widespread with the popularization of fabrication tools such as 3d-printers, laser cutters, CNC machines, open source microcontrollers and open source software. Although many pieces of common laboratory equipment have been developed, software control of these items is sometimes lacking. Specifically, control software that can be easily implemented and enable user-input and control over multiple platforms (PC, smartphone, web, etc.). The aim of this proof-ofprinciple study was to develop and implement software for the control of a low-cost, 3dprinted microscope. Here, we present two approaches, which enable microscope control by exploiting the functionality of the social media platform Twitter or player actions inside of the videogame Minecraft. The microscope was constructed from a modified web-camera and implemented on a Raspberry Pi computer. Four aspects of microscope control were tested, including single image capture, focus control and time-lapse imaging. The Twitterembodiment enabled users to send 'tweets' directly to the microscope. Image data acquired by the microscope was then returned to the user through a Twitter reply and stored permanently on the photo-sharing platform Flickr, along with any relevant metadata. Local control of the microscope was also implemented by utilizing the video game Minecraft, in situations where Internet connectivity is not present or stable. A virtual laboratory was constructed inside the Minecraft world and player actions inside the laboratory were linked to specific microscope functions. Here, we present the methodology and results of these experiments and discuss possible limitations and future extensions of this work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.